Über Bakterien die kleinsten lebenden Wesen

Von

Dr. Ferdinand Cohn Professor an der Universität zu Breslau

Mit Holzschnitten

Berlin, 1872 C. G. Lüberik'sche Verlagsbuchhandlung, Carl Habel

Internet Archive Online Edition Namensnennung Nicht-kommerziell Beitergabe unter gleichen Bedingungen 4.0 International

Im Jahre 1875 feiert die Wissenschaft das zweihundertjährige Jubiläum der Entdeckung einer neuen Welt durch Anton Leeuwenhoek. Ohne gelehrte Bildung, aber mit lebhaftem Forschertrieb ausgestattet, wie ihn das siebzehnte Jahrhundert, das Zeitalter der größten naturwissenschaftlichen Entdeckungen in so vielen begabten Geistern anregte, hatte Leeuwenhoek schon als Jüngling den Raufmannsladen von Amsterdam verlassen, in den er als Lehrling eingetreten, und sich in seiner Heimat Delft mit dem bescheidenen Posten eines Beschließers der Schöppenstube begnügt, den er durch 39 Jahre verwaltete; seine Muße aber und sein großes mechanisches Talent verwendete er zur Anfertigung von Vergrößerungsgläsern, mit denen er anfänglich nach Dilettantenart Mückenflügel und Bienenstachel, Schmetterlingsschuppen und Moospflänzchen beobachtete; aber die bif dahin unerreichte Vollkommenheit seiner Mikroskope und seine klare und ausbauernde Beobachtungsgabe enthüllten ihm bald "verborgene Naturgeheim» nisse"1 die er in begeisterten Briefen der Röniglichen Gesellschaft der Wissen» schaften in London mitteilte. Im April 1675 kam Leeuwenhoek auf den Einfall, ein Glastöhrchen voll stehenden Regenwasserf unter eines seiner Mitrostope zu bringen; mit staunender Bewunderung erblickte er im Wasser wunderliche Ges stalten, Glödchen, die sich aufblähten und zusammenzogen, Rügelchen, die lebhaft hin und herschoffen; im ersten Augenblick glaubte er die lebendigen Atome zu erbliden, auf denen nach der Philosophie des alten Demokrit alle Körper bestehen, und auf deren Wirbelbewegungen sein Zeitgenosse Descartes von Neuem die Welt sich aufbauen ließ. Bald aber überzeugte sich Leeuwenhoek, dass er ef mit Tierchen (animalcula) zu thun habe, die dem bloßen Auge unsichtbar, in zahlreichen Formen den Wassertropfen beleben; sie wurden später besonders reichlich in Aufqussen von Pfesser, Seu und anderen Tier- und Pflanzenstossen gefunden, und erhielten deshalb den Namen der Aufquss oder Infusionstierchen (Infusoria). Gerade ein Jahrhundert nach Leeuwenhoek fand sich ein Forscher in Dänemark, der 12 Jahre seines Lebens auf die Beobachtung dieser kleinsten Tiere verwendete, von denen er in den füßen und Meergewässern von Ropenhagen an 380 verschiedene Arten benannte und abbildete. Im letten Jahrhundert mehrte

¹Leeuwenhoek, Arcana naturae detecta.

 $^{^2\}mathfrak{D}$. F. Müller, Vermium terrestrium et fluviatilium historia 1774. Animalcula infusoria 1786.

fich in raschem Verhältnis die Jahl der Natursorscher, welche mit immer vollkommeneren Instrumenten in die unsichtbare Welt einzudringen suchten; außer den
zahlreichen Tiergeschlechtern wurde auch eine ganz eigentümliche mikroskopische
Flora entdeckt, deren Gestaltung und Entwickelung durchaus verschieden ist von
den sichtbaren Gewächsen. War Leeuwenhoek der Columbus dieser neuen Welt,
so können wir Ehrenberg³ als den Humboldt derselben bezeichnen; denn seit dem
Jahre 1829 bis auf den heutigen Tag hat Ehrenberg mit eisernem Fleiße deren
verborgene Gebiete bis an die äußersten Grenzen durchforscht, und nicht bloß die
mikroskopischen Wesen gründlicher und getreuer als seine Vorgänger beschrieben,
abgebildet und geordnet, sondern auch die ungeahnte Vedeutung enthüllt, welche
den Geschöpfen der unsichtbaren Welt in der gesamten Naturordnung zukommt,
nicht bloß in der Gegenwart, sondern auch in früheren geologischen Zeitaltern.

Jedermann weiß, in wie verschiedenen Größenverhältnissen das Leben der sichtbaren Welt sich verkörpert. Zu den kleinsten Tieren, die das unbewassnete Auge noch unterscheidet, gehören die Milben, die im Räse oder auf zuckerreichen Früchten oft in unzähligen Schaaren nisten; ihre Größe verhält sich zu der des Wenschen, etwa wie der Sperling zum Straßburger Münster; ähnlich mag das Verhältnis sein zwischen der Riesentanne und dem Moose, das auf ihrer Rinde wuchert. Von den Tierchen die Leeuwenhoek entdeckte, gibt derselbe an, dass ihre Größe sich zur Milbe erhalte, wie die Viene zum Gaul. Je mehr in den letzten Jahrzehnten die Mikrostope verbessert und ihre Vergrößerungskraft gesteigert wurde, desto kleinere Wesen wurden der scharfen Veobachtung zugänglich; denn unter den Tieren und Pflanzen der unsichtbaren Welt finden sich noch ähnliche Größenunterschiede, wie zwischen dem Hering und dem Walsisch.

Je kleiner aber die Wesen, desto einfacher zeigte sich ihr Bau, desto unvollstommener ihre Lebenstätigkeit, desto tieser ihre Stellung in der Nangordnung der Geschöpse. Unter den Tieren der mikroskopsischen Welt sind nur äußerst wenige, welche die Organenfülle eines Insekts, eines Krebses, selbst eines Wursmes besitzen; die eigentlichen Insussinischen stehen auf der untersten Stufe des Tierreichs. Ebenso sinden wir unter den mikroskopischen Pflanzen keine einzige, welche den entwickelteren Bau der blühenden Gewächse erreicht, oder auch nur der tieseren Klasse der Farne angehört; nur die niedersten Pflanzenformen, die

³Von dem Griechischen Bakterion, Stäbchen.

wir gewöhnlich alf Algen und Pilze bezeichnen, bilden die Wälder und Wiesen der unsichtbaren Welt.

Je mehr sich aber der innere Bau der mikrostopischen Wesen vereinsacht, desto weniger treten die Merkmale hervor, welche in der sichtbaren Welt Tiere und Pflanzen so leicht unterscheiden. Den Insusionstierchen sehlen Musteln und Nerven; Gefäße und Atmungsorgane sind nur äußerst unvollkommen entwickelt; auf der andern Seite zeigen die mikroskopischen Pflanzen selbstständige Bewegungen, und selbst Bewegungsorgane, wie wir sie nur bei Tieren zu sinden gewohnt sind. In den niedersten Wesen endlich scheint Tier und Pflanze ineinandergeslossen, und der Natursorscher gerät in Zweisel, welchem der beiden Neiche er sie zuweisen soll.

Die fleinsten aber und zugleich die allereinsachsten und niedersten aller lebenden Wesen nennen wir Bakterien⁴; sie bilden die Grenzmark des Lebens; ienseits derselben ist nichts Lebendiges mehr vorhanden, soweit wenigstens unser eheutigen mikroskopischen Hulfsmittel reichen. Und diese sind nicht gering; die stärksten unserer Vergrößerungsgläser, die Immersionssysteme von Hartnack geben 3-4000sache Vergrößerungen; und könnte man einen Menschen unter einem solchen Linsensystem ganz überschauen, er würde so groß erscheinen, wie der Montblanc oder gar der Chimborasso. Aber selbst unter diesen kolossalen Vergrößerungen sehen die kleinsten Vakterien nicht viel größer aus, als die Punkte und Kommas eines guten Druck; von ihren inneren Teilen ist wenig oder gar Nichts zu unterscheiden, und selbst die Existenz würde von den meisten verborgen bleiben, wenn sie nicht in unendlichen Mengen gesellig lebten. Diese kleinsten Vakterien verhalten sich ihrer Größe nach zum Menschen, etwa wie ein Sandforn zum Montblanc.

Ist es nun schon an und für sich wichtig, die kleinsten zugleich und die einfachsten aller lebenden Wesen genauer kennen zu lernen, so steigert sich unser Interesse an denselben durch die Erkenntnis, dass gerade diese kleinsten Wesen von der allergrößten Bedeutung sind, dass sie mit unsichtbarer, doch unwiderstehlicher Gewalt die wichtigsten Vorgänge der lebendigen und leblosen Natur beherrschen und selbst in das Dasein des Menschen zugleich geheimnis und verhängnisvoll

⁴Untersuchungen über Bakterien in "Beiträge zur Biologie der Pflanzen." Herausgegeben von Dr. Ferdinand Cohn. Heft 2. 1872, mit einer Tafel.

eingreifen.

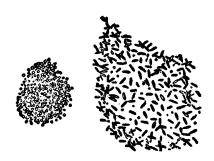
Die Gestalt der Bakterien gleicht bald einer Rugel, oder einem Ei, bald einem kurzen oder längeren Stäbchen oder Faden, bald einem Korkzieher oder einer Schraube. Ihr Körper besteht auf einer meist farblosen eiweißartigen Substanz, in der starkglänzende Fettkörnchen eingelagert sind, und die von einer dünnen, in Kali unlöslichen Haut eingeschlossen ist. Nach der Gestalt können wir Rugels Stäbchens Fadens und Schraubenbakterien unterscheiden; nach der Sprache der Bissenschaft werden die Bakterien in Gattungen und Arten verteilt; der Verfasser dieses Aussasse hat in seiner neuesten Bearbeitung der Bakterien⁵ 6 Gattungen unterschieden, die kugeligen und eirunden als Micrococcus, (Fig. 1.) die kurzen Stäbchen als Bacterium, (Fig. 2.) die geraden Fädchen als Bacillus, (Fig. 3.) die wellig gelockten als Vibrio, (Fig. 4.) die kurzen steisen Schrauben als Spirillum, (Fig. 5.) endlich die langen biegsamen Spiralen als Spirochaete (Fig. 6.) bezeichnet.

1: Micrococcus.

2: Bacterium Termo.

⁵ Nur bei den größten Spirillen (Fig. 5) find neuerdingf bewegliche Geißeln entdeckt worden, welche Wirbel im Wasser erregen und bei den Vewegungen mittätig sind.

3: Bacilluf subtilis.


4: Vibrio Rugula.

5: Spirillum volutans.

6: Spirochaete plicatilis.

7: Ballert von Rugel- und Stäbchenbakterien.

Fast alle Bakterien besitzen zwei verschiedene Lebensustände, einen beweglichen und einen ruhenden. Unter gewissen Bedingungen sind sie außerordentlich lebhaft bewegt und wenn sie in dichtem Gewimmel den Wassertropfen erfüllen, bieten die nach allen Nichtungen durcheinander sahrenden Bakterien einen überaus sessenstenden Anblick, den man mit einem Mückenschwarm oder einem Ameisenhausen wergleichen kann. Die Vakterien schwimmen hurtig vorwärts, dann ohne umzukehren ein Stück zurück; oder sie ziehen in Vogenlinien dahin, bald langsam zitternd und wackelnd, jest in plöslichem Sprunge raketenartig fortschießend, bald darauf der Quere nachgedreht wie ein Kreisel, oder längere Zeit ruhend, um plöslich wie der Blitz auf und davon zu sahren. Die längeren Fadensbakterien biegen ihren Körper beim Schwimmen, bald schwerfällig, bald rasch und gewandt, als bemühten sie sich durch Hindernisse ihre Vahn zu sinden, wie ein Fisch, der zwischen Wasserpflanzen seinen Weg sucht. Dann stehen sie eine Zeit lang still, als müssten sie eine Weile ausruhen; plöslich zittert der kleine Faden und schwimmt zurück, um bald darauf wieder vorwärtsusteuern. Mit all

diesen Bewegungen ist stets eine rasche Achsendrehung verbunden, wie bei einer in der Mutter sich bewegenden Schraube; dies wird besonders deutlich, wenn die Stäbchen geknickt sind; dann sieht man sie gleichsam taumelnd sich umherwälzen. Wenn die wellenförmigen Vibrionen und die schraubenförmigen Spirillen sich rasch um ihre Achse drehen, so erregen sie eine eigentümliche Sinnestäuschung, als ob sie sich aalgleich schlängelten, obwohl sie völlig steif sind; oft zuchen sie meteorartig hin und her, dass sie dem Veobachter kaum zum Vewusstsein kommen, oder rollen rasch durch das Gesichtsseld; während sie jetzt an einem Ende sich sesthaltend, sich mit dem andern im Kreise bewegen, gleich einer um einen Faden gedrehten Schleuder, sieht man sie bald darauf sich langsam durch das Wasser schrauben.

Fast alle älteren Beobachter haben die Bakterien als Tiere betrachtet, da ihre Bewegungen als willkürliche aufgefasst wurden. Allerdings sind es innere Lebenskätigkeiten, welche die Bewegungen der Bakterien veranlassen und die bewegende Kraft ist umso rätselhafter, als keine Bewegungsorgane sichtbar werden. Dennoch ist kein Zweisel, dass der Anschein der Willkür nur Täuschung, dass bei den Bakterien keine Seelentätigkeiten im Spiele sind, wie sie im Begriss der Willkür liegen, und in der Tat die Bewegungen wenigstens der höhesren Tiere beherrschen. Ganz ähnliche Bewegungen, wie schon bemerkt, werden bei vielen mikroskopischen Pflanzen beobachtet, entweder andauernd, wie bei den Rieselzellen (Diatomeen) und Schwingsaden (Oscillarien), oder vorübergehend während der Fortpflanzung, wie bei den Schwärmsporen und Samenkörperchen der Algen und Vilze.

Die gesamte Entwickelung der Vakterien macht es in höchstem Grade wahrsscheinlich, dass sie ins Pflanzenreich gehören und in die nächste Verwandtschaft der Oscillarien gehören. Auch wechselt bei den Vakterien mit dem beweglichen ein ruhender Zustand, wo sie von gewöhnlichen Pflanzenzellen sich durchaus nicht unsterscheiden; sie schwärmen nur bei günstiger Temperatur, reicher Nahrung und Anwesenheit von Sauerstoff; unter ungünstigen Umständen sind sie bewegungs

⁶³ch nehme eine Hefezelle im Mittel als eine Rugel von 0.008 Millimeter Durchmesser, 0.0000025 Rubikmillimeter Inhalt. In der Presshefesabrik zu Gießmannsdorf bei Reisse können täglich 100 Str. Presshefe gewonnen werden, die auf 75 Prozent Wasser, 25 Prozent Hefepilzen besteht.

lof; gewisse Arten, wie die Rugelbakterien und die Bakterien des Milzbrands, scheinen sich nie zu bewegen.

Bie alle lebenden Besen, vermögen auch die Bakterien sich forzupflanzen; diese Fortpflanzung beruht auf der Querteilung. Die Bakterie wächst, bis sie etwa das Doppelte ihrer ursprünglichen Größe erreicht hat; dann schnürt sie sich in der Mitte ein, wie eine 8, und zerbricht schließlich in ihre zwei Hälften, von denen jede in kurzer Zeit auff Neue sich in zwei Teile teilt. Wegen des raschen Verlauff dieser Vorgänge sindet man daher die Vakterien fast immer in der Vermehrung, in der Mitte eingeschnürt oder paarweise zusammenhängend (Fig. 1-4).

Je wärmer die Luft, desto rascher verläuft die Teilung der Vakterien, desto stärker ist ihre Vermehrung; bei niederer Temperatur wird sie langsamer und hört in der Nähe des Gefrierpunktes gänzlich auf. Es verlohnt wohl der Mühe, sich durch Nechnung eine Vorstellung von der unglaublichen Massenentwickelung zu machen, deren diese kleinsten aller Wesen unter günstigen Vedingungen durch ihre Vermehrung fähig sind.

Wir nehmen an, daff eine Bakterie sich innerhalb einer Stunde in 2, diese wieder nach einer Stunde in 4, nach 3 Stunden in 8 teilen und sofort; nach 24 Stunden beträgt die Zahl der Bakterien bereits über 16 1/2 Million (16,777,220); nach 2 Sagen würde sie zu der ungeheuren Zahl von 281 1/2 Billionen, nach 3 Sagen zu 47 Srillionen anwachsen; nach einer Woche würde ihre Anzahl sich nur durch eine Zisser von 51 Stellen ausbrücken lassen.

Um diese Zahlen leichter fasslich zu machen, wollen wir die Masse und das Gewicht berechnen, welches aus einer Bakterie in Folge ihrer Vermehrung hervorgehen kann. Die einzelnen Körperchen der gemeinsten Art der Stäbchensbakterien (Bacterium Termo, Fig. 2) haben die Gestalt kurzer Inlinder, von 1/1000 Millimeter im Durchmesser und etwa 1/500 Millimeter Länge. Denken wir uns ein Würfelförmiges Hohlmaß von ein Millimeter Seite (ein Rubitsmillimeter), so würde dasselbe nach den eben angegebenen Verhältnissen von 633 Millionen Stäbchenbakterien ohne Zwischenraum ausgefüllt werden. Nach 24 Stunden würden die aus einem einzigen Stäbchen hervorgegangenen Vakterien etwa den vierzigsten Teil eines Rubikmillimeters einnehmen; aber schon am Ende des solgenden Tages würden die Vakterien einen Raum erfüllen, der 442,570

folder Würfel, oder was dasselbe ist, etwa 1/2 Liter oder 44 1/2 Rubikzentimestern gleich kommt. Nehmen wir den Raum, den das Weltmeer einnimmt, gleich 2/3 der Erdobersläche, und seine Tiese im Mittel gleich einer Meile, so ist der Gesamtinhalt des Oceans 928 Millionen Rubikmeilen; bei stetig fortschreiender Vermehrung würden die aus einem Reim entstammenden Vakterien schon nach weniger als 5 Tagen das ganze Weltmeer vollskändig erfüllen; ihre Zahl würde sich dann nur durch eine Zisser von 37 Stellen ausdrücken lassen.

Noch überraschender sind die Gewichtsverhältnisse. Setzen wir das spezisische Gewicht einer Basterie dem des Wassers gleich, was von der Wahrheit nicht viel abweichen kann, so ergibt sich auf den oben angeführten Maßen, dass ein einziges Stäbchen 0.000,000,001,571 Milligramm, oder dass 636 Milliarden Vakterien ein Gramm, oder 636,000 Milliarden ein Rilogramm wiegen. Nach 24 Stunden würde das Gewicht der Bakterien ungefähr 1/40 Milligramm, nach 48 Stunden fast 1 Pfd. (442 Gramm) betragen, nach 3 Zagen dagegen nahezu 7 1/2 Million Rilogramm, oder ein Gewicht von 148,356 Zentnern erreichen.

Man halte foldse Beredynungen nicht für müßige Spielerei; fie allein machen unf die koloffalen Arbeitfleistungen der Bakterien verständlich. Auch stützen sie sich nur auf solche Voraussekungen, die von der Natur selbst gegeben sind; wäre z. B. die Dauer des Teilungsvorganges in Wirklichkeit auch erheblich länger alf die von unf angenommene Stunde, so würden die berechneten Zahlen eben nur ein paar Stunden oder Tage später zutreffen. Wenn freilich in begrenztem Raume niemals jene Werte auch nur annähernd erreicht werden, so liegt dies nicht etwa daran, dass die Vermehrungsfähigkeit der Bakterien hinter der Rechnung zurückleibt, sondern allein an der beschränkten Nahrung; selbstverständlich erzeugen die Bakterien den Stoff nicht selbst, der ihren Körper bildet, sondern sie nehmen ihn von außen als Rahrung auf, und es können sich daher nicht mehr Bakterien bilden, als ihnen Nahrung geboten wird. Dazu kommt, dass die übrigen Uflanzen und Tiere auf dieselben Nährstoffe angewiesen sind, und sich gegenseitig die Existenz streitig machen; jener grausame Ramps ums Dasein, der nach altem Brauch den Unterliegenden zugleich ausrottet, hält die Vermehrung der Vakterien, wie aller übrigen Wesen, in Schranken; nur wo jene die Oberhand behalten, vermögen sie sich ihrer Mitbewerber, die zugleich ihre Todfeinde sind, zu erwehren. Die Presshefesabriken geben uns aber ein anschauliches Beispiel, zu welch kolossalen Massenverhältnissen sich mikroskopische Rörperchen vermehren können, wenn ihnen ausreichende Nahrung geboten, und die Ronkurrenz anderer Besen sorgfältig serngehalten wird. Der Hespilz übertrisst die Stäbchenbakterien in Masse und Gewicht etwa um das 160sache⁷; das Gewicht einer Hespzelle ist also gleich 0.0000025 Milligramm; oder 40 Millionen Hespzellen wiegen 1 Rilogramm. Werden nun in riesigen, mit geeigneter Nahrung reichlich erfüllten Bottichen die Hespzellen ungestörter Vermehrung überlassen, so können in großen Fabriken innerhalb 24 Stunden über 100 Zentner Presshese erzeugt werden; möglicherweise sind die mehr als 50 Milliarden Zellen, die solche Masse bilden, im Verlauf eines Tages auf einem einzigen Reime hervorgegangen.

Wir kennen bei den Bakterien bif jetzt keine andere Vermehrung alf die eben geschilderte Zweiteilung; die Erzeugung von Eiern oder Sporen, wie sie bei der Fortpflanzung aller übrigen Pflanzen und Tiere gebildet werden, ist bei diesen einsachsten Wesen noch nicht beobachtet. Nach der Teilung entsernen sich entweder die Bakterienhälsten, und schwärmen als selbstständige Wesen davon; oder sie bleiben kettenartig an einander gereiht und bilden dann längere oder kürzere Fäden; in andern Fällen bleiben ganze Generationen in Rolonien, Nestern oder Ballen vereint, oder sie verbinden sich zu Hausen, welche schon dem bloßen Auge wie farblose oder auch farbige Gallerts oder Schleimmassen erscheinen, als weiße Flöschen oder Fäden im Wasser schwimmen oder am Boden von Flüssigkeiten sich flostig absesen. (Fig. 7.)

Die Bakterien gehören zu den am meisten verbreiteten Wesen; man kann sie geradezu allgegenwärtig nennen; sie sehlen nirgends weder in der Luft noch im Wasser; sie heften sich der Oberfläche aller sesten Körper an. Aber massenhaft entwickeln sie sich nur da, wo Zersezung und Verwesung, Gärung und Fäulnis stattsindet; bringt man ein Stücken Fleisch, eine Erbse oder irgendeinen anderen tierischen oder Pflanzenstoff in Wasser, so wird dieses früher oder später trübe, dann milchig; es verliert seine Durchsichtigkeit, weil sich in ihm die Vakterien in den oben berechneten Verhältnissen vermehren, bis diese sast ohne Zwischenraum das Wasser erfüllen. Gleichzeitig schreitet die Käulnis immer weiter fort, unter

⁷Bildung von Anilinfarben auf Proteinkörpern. Journal für praktische Chemie. 1866.

Entwidelung verschiedener, meist sehr übelriechender chemischer Verbindungen.

Nach einiger Zeit nimmt die Trübung ab; das Wasser wird wieder klar und geruchlos; der organische Stoff ist von den Bakterien verzehrt worden; diese hören nun auf, sich weiter zu teilen, und häusen sich am Boden unbeweglich als weißer Niederschlag an; wird neue Substanz zum Faulen zugefügt, so beginnt auch die Vermehrung der Vakterien auf Neue.

Auch ohne Wasser in seuchter Luft vermehren sich die Vakterien, sobald sie in Zersekung begrissen Stosse sinden; sie überziehen im dumpfigen Speiseschrank die gekochten Kartosseln, den Käse und andere Speisen mit schleimigen, farblosen oder gefärdten Überzügen, die selbst mit blosem Auge von den schneeweißen mit bläulichem Sporenpulver überstreuten Spinnweben der Schimmelpilze sich leicht unterscheiden; auch der weißliche Schleim, der die Zähne überzieht, wird großenteils von Vakterien gebildet.

Woher kommt ef nun aber, dass sich stets Vakterien in faulenden Stoffen entwickeln? In welchem Verhältnis stehen die Vakterien zur Fäulnis? Auf diese Fragen sind verschiedene Antworten gegeben worden.

Die Einen sagen: Im Körper lebender Tiere und Pflanzen find die chemischen Elemente zu eigentümlichen, sogenannten organischen Berbindungen zusammensgesügt. Der Tod löst das Band, vermittelst dessen die Lebenstraft die Elemente verknüpft; diese überlassen sich dem freien Spiel ihrer Anziehungsträfte, und ordnen sich, diesen folgend, zu neuen einsacheren Berbindungen. Gleichzeitig sucht der Sauerstoff der Luft, der zu einzelnen Stossen des toten Körpers lebhafte Berwandtschaft besist, sich mit diesen zu verbinden; so entstehen Entmischungen, Zersezungen und Neubildungen, durch welche die Form und Zusammensezung des toten Körpers gänzlich zerstört wird; diese Borgänge sind es, welche wir als Fäulnis und Berwesung bezeichnen; es sind rein chemische Prozesse, der Berbrennung, der Berwitterung, dem Rossen der Metalle vergleichbar. Die Bakterien sinden reichliche Nahrung in den bei der Fäulnis sich bildenden Berbindungen, während sie sich von lebendigen Wesen nicht ernähren können; kein Wunder, dass ihre Keime, wenn sie auch ansänzlich nur vereinzelt Zutritt gefunden, sich bei der Fäulnis so außerordentlich vermehren.

Wäre diese Auffassung richtig, so wären die Bakterien nur zufällige Besqleiter der Fäulnis; es müsste Fäulnis toter Körper unter den dafür geeigneten

Bedingungen auch dann eintreten, wenn die Bakterien von denselben fern ge-halten werden.

Wenn wir Versuche anstellen, um die Richtigkeit dieser Vermutung zu prüfen, so ist diese Bedingung freilich nicht leicht zu erfüllen; bringen wir zum Beispiel Teile oder Säfte eines Tieres oder einer Pflanze, Fleisch, Blut, Harn, Milch oder Stücke von Blättern, Früchten, Samen in ein Glaskölbchen, so ist stets zu vermuten, dass gleichzeitig auch einige der so außerordentlich verbreiteten Bakterien mit eingeführt werden, und diese Vermutung wird fast zur Gewissbeit, wenn wir in das Rölbchen noch etwas Wasser thun, da alles Wasser nachweisbar Bakterienkeime enthält. Ef gibt aber ein einfachef Mittel, alle Bakterien in dem Glaffölden zu beseitigen; man braucht dasselbe nur eine Zeit lang zu kochen. Denn so wenig, wie irgendein anderes Tier oder Pflanze, so wenig widerstehen die Bakterien der Siedhitze; neuere Versuche haben sogar gezeigt, dass schon eine Erwärmung auf 60° C. die Bakterien tötet, nur muss diese Temperatur lange genug einwirken, um sicher zu gehen, dass die ganze Masse gleichmäßig durchdrungen und nicht einzelne Bakterien der Vernichtung entgangen sind. Durch die Erhikung allein wird die Käulnis nicht aufgehoben: die Erfahrung lehrt, dass gekochtes Fleisch, Eier, Wilch u. s. w. zwar weit langsamer, aber schließlich ebenso aut faulen wie rohe.

Hat man durch Erhitzung die Bakterien im Glaskölden getötet, so muss man noch dafür sorgen, dass nicht neue Reime aus der Luft in das Innere desselben hineingeraten. Für diesen Zweck schmolz im vorigen Jahrhundert ein durch scharffinnige Experimente berühmter Naturbeobachter, der italienische Abt Spallanzani, den Half des Rölbchens während des Rochens zu; (Fig. 8.) das Ergebnis war, dass die im Rölbchen eingeschlossenen Tiers und Pflanzenstosse sich für alle Zeit unverändert hielten ohne jemals zu faulen.

9

10

Der französische Graf Appert benutte am Anfang unseres Jahrhunderts diese Methode, um Fleisch, Gemüse und andere Nahrungsmittel aufzubewahren, indem er dieselben in Blechbüchsen, die mit einer kleinen Öffnung versehen, einschloss, sodann im Wasserbad ein Paar Stunden kochte und während des Rochens die Öffnung zulötete. Jede Haussrau weiß, dass sich in Blechbüchsen die Speisen Jahrelang halten, ohne zu verderben; die Industrie beschäftigt sich mit dem Einlegen von Nahrungsmitteln im Großen nach dieser Methode; erhalten wir doch durch dieselbe sogar Nindsleisch auf Australien, Hummern auf Amerika, die vielleicht Jahre alt, beim Gebrauch sich wie frische verhielten.

Man hat nun freilich eingewendet: der Grund, dass die in den Spallanzanischen Rölbchen und den Appert'schen Blechbüchsen eingeschlossenen Stosse nicht
faulen, ist nicht der, weil in ihnen keine Bakterien, sondern weil in ihnen kein
Sauerstoss anwesend ist; denn es wird ja beim Rochen die Luft ausgetrieben und
der Zutritt neuen Sauerstoss durch das Zulöten unmöglich. Um diesen Sinwand
zu widerlegen, müsste man in die hermetisch verschlossenen Gefäße Luft zulassen,
die keine Bakterien enthält. Zu diesem Zweck änderte Dr. Schwann 1837 den
Spallanzani'schen Bersuch so ab, dass er den Rolbenhals erst zuschmolz, nachdem
in denselben Luft eingetreten, welche durch ein glühendes Rohr gestrichen war;
in diesem wurden natürlich alle lebendigen Reime zerstört.

Schröder und Dusch gaben 1854 ein bequemeres Mittel; sie verstopften den offenen Half des Rölbchens mit gereinigter Watte; indem die Luft in das gekochte

Rölbchen beim Abkühlen desselben eindrang, setzte sie zwischen den Fasern der Baumwolle, wie in einem Filter, alle Reime ab. (Fig. 9.)

Endlich ersann Pasteur 1862 ein noch einfacheres Verfahren, er bog den in eine Spike ausgezogenen Rolbenhalf hakenförmig nach unten, ohne ihn zuzuschmelzen; die in der Luft enthaltenen Reime, welche der Schwere folgend, sich gewöhnlich in offenen Gefäßen abseken, konnten nunmehr nicht ins Innere des Rölbchensgelangen. (Fig. 10.)

Das Ergebnis aller drei Versahren ist immer das nämliche: die im Kölbchen eingeschlossenen Stosse geraten niemals in Fäulnis; gleichwohl sehlt es ihnen nicht an Luft; nur die Vakterien sinden keinen Eingang. Aus diesen und vielen ähnelichen Versuchen lässt sich mit der größten Sicherheit schließen: dass wo auch alle übrigen Vedingungen der Fäulnis gegeben sind, diese doch nicht stattsindet, wenn keine Vakterien anwesend sind; dagegen beginnt die Fäulnis augenblicklich, sobald Vakterien absichtlich oder unabsichtlich zugesetzt werden, sei es auch in geringster Zahl; die Fäulnis schreitet in demselben Maße fort, in dem sich die Vakterien vermehren; alle Umstände, welche die Vermehrung der Vakterien begünstigen, beschleunigen die Fäulnis; alle Vedingungen, welche deren Entwickelung aufhalzten, verlangsamen die Fäulnis; alle Mittel, welche Vakterien töten, heben auch die Fäulnis auf; umgekehrt hört die Vermehrung der Vakterien auf, sobald alle fäulnissähige Substanz zerstört ist.

Also sind die Bakterien nicht die zufälligen Begleiter, sondern sie sind die Ursache der Fäulnis; Fäulnis ist ein von Bakterien erregter chemischer Prozess. Nicht der Tod, wie man gewöhnlich glaubt, erzeugt die Fäulnis, sondern das Leben iener unsichtbaren Wesen.

Es scheint beinahe selbstverständlich, dass jeder Körper, von dem das Leben gewichen, der Verwesung anheimfällt; und doch steht kest: ohne die Lebenstätigsteit der Vakterien würden alle Geschöpfe auch nach ihrem Tode Form und Mischung beibehalten, so gut wie die ägyptischen Mumien, die in den dänischen Torfmooren versunkenen Recken, oder wie die Mammuts und Rhinozerosseischen, die seit ungezählten Jahrtausenden im sibirischen Sie eingefroren, sich mit Haut und Haar unversehrt erhalten haben. Sobald das Sis schmilzt, verfallen auch diese letzen Überbleibsel einer ausgestorbenen Tierwelt in wenig Tagen der Verwesung: die Ursache ist leicht begreisslich: die Vakterien stellen in der

Nähe des Gefrierpunktes ihre Lebenskätigkeit ein, während sie bei etwas höherer Temperatur sich sosort vermehren und Fäulnis erregen. Im Torsmoor und in den Mumien ist es die chemische Mischung, welche die Entwicklung der Valeterien verhindert. Wenn sich in einem nach der Methode von Spallanzani, Schröder und Dusch, oder Pasteur eingerichteten Kölbchen ein Stücken Fleisch oder ein Pflanzenstoff Jahrelang unverändert erhalten hat, so braucht man nur einen einzigen Vakterienhaltigen Wassertropfen zuzuseten, um sofort die Fäulniseinzuleiten.

Die gesamte Naturordnung ist darauf gegründet, dass die Körper, in denen das Leben erloschen, der Ausschung anheimfallen, damit ihre Stosse wieder neuem Leben dienstbar werden können. Denn die Masse des Stosses, welche sich zu lebenden Wesen gestalten kann, ist auf der Erde beschränkt; immer die nämlichen Stossteilchen müssen in ewigem Kreislauf von einem abgestorbenen in einen lebenden Körper übergehen; ist auch die Seelenwanderung eine Mythe, so ist die Stosswanderung eine naturwissenschaftliche Tatsache. Gäbe es aber keine Vakterien, so würden die in einer Generation der Tiere und Pflanzen verkörperten Stosse auch nach deren Ableben gebunden bleiben, wie es die chemischen Verbindungen in den Felsgesteinen sind; neues Leben könnte sich nicht entwickeln, weil es ihm an Körperstoss sehlen müsste. Indem die Vakterien in rascher Fäulnis sehen abgestorbenen Leib zu Erde werden lassen, machen sie allein das Hervorsprießen neuen Lebens, und damit die Fortdauer der lebendigen Schöpfung möglich.

Die wunderbare Tatsache, dass die Fäulnis eine Arbeitsleistung der Vakterien ist, steht nicht vereinzelt da; es gibt eine ganze Neihe von chemischen Veränderunsgen, welche durch Vakterien und ähnliche mikroskopische Wesen erregt werden; man bezeichnet diese Vorgänge gewöhnlich als Gährungserscheinungen, und die Wesen, welche die Ursachen derselben sind, als Fermentpilze. Die Vakterien, und zwar die von den Natursorschern als Vacterium Termo bezeichnete Art (Fig. 2), sind das Ferment der Fäulnis.

Dassenige Ferment, welches am längsten bekannt und am genauesten unstersucht worden, ist der Alkoholhesepilz (Sacharomyces cerevisiae); seine ovalen Rügelchen wurden schon von Leeuwenhoek im Vier beobachtet, aber erst 1837 von Cagniard Latour und fast gleichzeitig von Schwann als die eigentlichen Erreger

jener Gärung erkannt, welche den Zucker in Alkohol und Rohlenfäure umwandelt, während nebenbei noch kleine Mengen von Glycerin und Bernsteinfäure gebildet werden. Die genauste Erkenntnis über das Verhalten der Hefevilze bei der Alkoholgärung verdanken wir Paskeur, dem wir den Ruhm eines der genialsten und eraktesten Forscher des beutigen Frankreichs nicht schmälern wollen, wenn derselbe sich auch von der Geschmadlosigkeit nicht ferngehalten hat, die Bitterkeit nationaler Gereiztheit auf das neutrale Gebiet der Wissenschaft zu übertragen. Pasteur zeigte, dass der Hefepilz auf denselben Stoffen besteht, wie alle anderen Pflanzen, auf Roble, Sauerstoff, Wasserstoff, Stickstoff und einer Anzahl Mineralstoffen, unter denen Rali und Phosphorsäure die wichtigsten sind; foll der Hefevilz wachsen und sich vermehren, so muss er diese Stosse sämtlich alf Nahrung empfangen und sie durch seine Lebenstätigkeit zum Bau seiner Zellen verwenden. Der Hefepilz findet die Gesamtheit seiner Nährstosse nicht in reinem Zuder, wohl aber im aufgepressten Traubensaft, in der Bierwürze und andern gärungsfähigen Flüssigkeiten; er vermehrt sich nur, solange er dieselben findet. Sauerstoff und Wasserstoff werden ihm im Wasser dargeboten; auch die Mineralstoffe müssen in der Lösung vorhanden sein; sie lassen sich später wieder in der Hefeasche nachweisen. Vom Stickstoff glaubte man früher, dass ihn der Hefepilz nur auf den eiweißartigen Berbindungen aufnehmen könne, welche im Traubensafte wie in der Bierwürze nie fehlen; Pasteur zeigte, dass der Hefepilz seinen Stickstoffbedarf auch durch Aufnahme von Ammoniak befriedigen kann, welches auf Wasserstoff und Stickstoff besteht. Die Rohle endlich entnimmt der He fepilz unmittelbar und auffchließlich auf dem Zucker; er bildet seine Zellhaut und seinen Fettgehalt durch geringe Umwandlungen des Zuckers; vermutlich erzeugt er auch die Eiweißstoffe, die in seinen Zellen vorhanden sind, durch Verbindung des Zuder mit Ammoniak. Indem nun der Hefepilz den Zuder verbraucht, um darauf seine eigenen Zellen zu bilden, zu ernähren und zu vermehren, bewirkt er ein Zerfallen des Zuders und eine neue Anordnung seiner feinsten Stoffteilchen; er verursacht dadurch eben jene Veränderung, die als Alkoholgärung bezeichnet wird. Ist die Gärung vorüber, so ist der Zucker verschwunden; aber auch der Hefepilz kann sich nun nicht weiter vermehren, er sett sich am Boden der ausgegorenen Flüssigkeit als Unterhefe ab, oder wird mit der stürmisch entweichenden Rohlenfäure als Schaum oder Oberhefe ausgeworfen.

Andere Gärungen werden durch Bakterien oder durch mikrostopische Wesen erregt, die den Bakterien verwandt, nur durch Spaltung oder Teilung ihrer Zellen sich vermehren, und deshalb mit den Bakterien in der Klasse der Spaltpilze (Schizomyceten) vereinigt werden. Wenn Bier oder Wein an der Lust mit der Zeit sauer werden, so bildet sich Essigsäure; durch Bakterien, welche in lange Retten gereiht, oder zu schleimigen Häusen verbunden sind, wird der Alkohol der geistigen Flüssigkeit in Essigsäure verwandelt. Pasteur hat gezeigt, dass alle Krankheiten des Weines von mikrostopischen Fermentpilzen verursacht werden, deren Reime während der Weinbereitung in die Flüssigkeit gelangen und sich darin mehr oder weniger rasch vermehren; ihm gebührt das Verdienst, diese Entdedung zugleich praktisch zum größten Vorteil des Weinbaues verwertet zu haben; wenn der Wein in den Flaschen auf 50-70° erwärmt wird, so wird nicht bloß das Essigserment, sondern auch die übrigen Spaltpilze getötet, die den Wein kahmig, schleimig, oder bitter machen; der Wein wird haltbar, er kann ausgesührt werden, und gewinnt an Feuer, Vouquet und Werth.

Wenn süße Milch sauer wird, so beruht dies darauf, dass der Milchzucker in Milchsäure verwandelt wird. Auch hier ist ein Fermentpilz aus der Rlasse der Vakterien tätig, wie Pasteur zuerst nachgewiesen; wird die Milch gekocht, so wird das Milchsäureserment getötet; und wird der Zutritt neuer Reime verhindert, so hält sich die Milch durch unbegrenzte Zeit süß. Das nämliche Milchsäureserment spielt auch bei der Vereitung des Sauerkrauts, der Sauergurken u. s. w. eine Rolle; entwickelt es sich im Nübensaft oder in der Vierwürze, so macht es den Kabrikanten großen Schaden.

Andere Fermentpilze erzeugen andere Gärungen; eine Art macht den Harn alkalisch, eine andere verwandelt Gerbstoff in Gallussäure, wieder andere sind bei der Buttersäuregärung und bei der Bildung der Räse tätig; besonders interesssant sind die Fermentpilze aus der Rlasse der Rugelbakterien, welche Farbstoffe erzeugen.

Seit uralter Zeit geht die Sage, dass sich von Zeit zu Zeit auf Speisen, besonders auf Brot, plößlich ein Bluttropfen bilden könne; ist erst einer erschiesnen, so vermehrt sich das Blut, es tropft und überzieht weite Flächen; wurde dies in alter Zeit beobachtet, so galt es als ein Unheildrohendes Zeichen, das den Zorn der Gottheit anzeigt, verborgene Verbrechen offenbart und blutige Sühne ers

heischt, Die Geschichte berichtet bis in die neue Zeit von zahllosen Opfern, welche einem sinsteren Aberglauben sielen, so oft das Wunder des Bluts auf Speisen, besonders aber, wenn es auf der geheiligten Oblate einer Hostie sichtbar ward. Wit dem Jahrhundert der Ausklärung hörte allmählich das Blutwunder auf; aber erst seit den letzten Jahrzehnten erkannte man, dass den Wunderberichten eine naturwissenschaftliche Tatsache zu Grunde liege.

Chrenberg war ef, der zuerst die Blut-Erscheinung auf das Sorgfältigste erforschte; sie bildet sich in feuchter Luft, nur auf gekochten, nicht auf rohen Speisen; auf Kartoffeln, Reif, Mehlkleister, Polenta, selbst auf Fleisch, Milch und Hühnereiweiß, von selbst, ohne dass man sie jedoch willkürlich hervorrusen fönnte. Zuerst erscheinen meist kleine, rosenrote oder purpurne Schleimtröpschen, die zur Größe eines starken Stecknadelkopfes anwachsen und wie Fischrogen aussehen, dann sich verflachen, zusammenfließen und einen zähen blutigen Schleim bilden. Breitet man mit der Nadel einen Tropfen der roten Gallert auf einer frischen Kartoffel auf, so vermehrt sich rasch die rote Substanz; es ist leicht, so große Mengen zu erzeugen, dass man sie zum Färben benußen könnte; leider ist der präcktige Karbstoff nicht haltbar: er wird am Licht bald zerstört. Ehrenberg fand in dem roten Schleim unzählige ovale Körperchen, denen er den Namen der Wundermonaden (Monaf prodigiosa) gab; wir bezeichnen sie besser als rote Rugelbakterien (Micrococcus prodigiosus) (Fig. 1); sie ernähren sich von den eiweißhaltigen Speisen, auf deren Oberfläche sie sich entwickeln, zersetzen dieselben und erzeugen durch eine eigentümliche Vigmentgärung den roten Farbstoff, der, wie Otto Erdmann8 und Schroeter9 nachgewiesen haben, eine auffallende Verwandtschaft mit jenen glänzenden Anilinfarben besitzt, welche in der neuesten Zeit eine so hohe Bedeutung für die Färbeindustrie gewonnen haben.

An historischem Interesse, und dem mächtigen Eindruck, welchen es auf die mythenbildende Phantasie der Bölker ausübte, steht das "Bunderblut" einzig da; als naturwissenschaftliche Erscheinung schließt es sich an eine ganze Reihe von Färbungen, welche in seuchter Luft fast regelmäßig auf Kartosseln, auf

⁸Bildung von Anilinfarben auf Proteinförpern. Journal für praktische Chemie. 1866.

⁹Schröter über einige durch Bakterien gebildete Pigmente in Cohns Beiträgen zur Biologie der Pflanzen. Heft 2. 1872.

Räse, gekochten Eiern und anderen Speisen erscheinen, in Gestalt schneeweißer, schwefelgelber, orangeroter, spangrüner, violetter, blauer oder brauner Fleden, Tröpfchen und Schleimmaffen; alle diese Farben, zum Teil ebenfalls Anilinpigmenten verwandt, werden von Rugelbakterien erzeugt, welche unter dem Mikrostope sich von dem Micrococcus prodigiosus des Wunderbluts kaum unterscheiden lassen. Wenn sich die Milch von selbst blau oder gelb färbt, oder der Eiter auf Bunden eine spangrüne Färbung annimmt, so sind Stäbchenbakterien als Erzeuger der Farbstoffe in diesen Flüssigkeiten nachgewiesen. 10 Der von den Chemifern so viel benuzte Lakmus wird nebst einigen verwandten Pigmenten auf strauchigen oder krustigen Felsensbewohnenden Flechten gewonnen, indem dieselben im Wasser so lange der Käulnis überlassen bleiben, bis der anfänglich farblose Außug an der Luft eine schöne purpurne, rote oder blaue Färbung annimmt; nach neueren Forschungen ist es wahrscheinlich, dass auch der Lakmus durch die Lebenstätigkeit von Bakterien gebildet wird: es ist sogar gelungen, durch Rugelbakterien in künstlichen chemischen Lösungen, welche an sich wasserklar und vollkommen farblof, eine gewisse Menge weinstein- und essigsaures Ammoniak enthalten, in kurzer Zeit einen dem Lakmus ganz ähnlichen blauen Farbstoff zu erzeugen, der die Flüssigkeit erst hellblau, von Tag zu Tag immer prächtiger und tiefer blau färbt; in andern Versuchen traten Rugelbakterien gewissermaßen als Fabrikanten von safts oder spangrünen, gelben oder roten Farben auf, die sie auf farblosen chemischen Lösungen herzustellen vermögen.

Endlich hat sich in jüngster Zeit ein ungeahnter Einblick in geheimnisvolle Lebenstätigkeiten der Bakterien eröffnet, durch welche dieselben mit dämonischer Gewalt über Wohl und Wehe, ja über Leben und Sterben der Menschen entscheiden.

Säufiger vielleicht als je in Folge des gesteigerten Völkerverkehrs, sind in den letten Jahrzehnten Menschen und Tiere von der Gottesgeißel der Epidemien heimgesucht worden, die mit unaushaltsamem Schritt von Stadt zu Stadt, von Land zu Land wandern, einen einzelnen Ort nur eine Zeit lang heimsuchen, dann gleichsam ermattend verschwinden, um an einer anderen Stelle ihr Werk forkuseten, und meist erst nach längerer Zwischenzeit wieder zurückzusehren. Nur zu oft vergeblich bemüht sich ärztliche Kunst und Wissenschaft, der verheerenden

¹⁰ Bacterium (Vibrio) synganthum, Bact. syncyanum Ehr., Bact. aerugineum Schoet.

Gewalt dieser Krankbeiten ihre Opfer zu entreißen, oder ihrem Gange durch Vorbeugungsmaßregeln Schranken zu setzen. So verschieden auch die einzelnen Rrankheitsbilder, so haben doch alle Epidemien, Cholera, Vest, Typhus, Diphtherie, Pocken, Scharlach, Hospitalbrand, Rinderpest und wie sie alle heißen, gewisse gemeinschaftliche Züge: die Krankheit entsteht nirgends von selbst, weder auf äußeren noch auf inneren Ursachen; sondern sie wird auf einem anderen Ort eingeschleppt, wo sie bereits früher herrschte, durch einen Kranken, oder durch Gegenstände, die mit einem Kranken in Berührung waren; sie verbreis tet sich nur durch Ansteckung. Hat die Ansteckung stattgefunden, so vergehen Stunden und selbst Tage, ehe die Zeichen derselben äußerlich hervortreten; nach einer gewissen Zeit, der Inkubation, bricht die Krankheit auf durch gewaltsame Störungen in derkgesetmäßigen Lebenskätigkeit aller Organe, vom Gehirn bis zum Verdauungspftem; der Kranke leidet, alf stände er unter dem Einfluss eines Giftef, welchef in sein Blut eingedrungen; und wie er selbst durch einen Giftstoff angestedt, so verbreitet er wieder das Gift weiter, im Athem, im Schweiß, in den Ausleerungen, selbst in den Kleidern, oder der Wäsche; in manchen Krantheiten sammelt sich der Ansteckungsstoff in konzentriertesker Form in besonderen Pusteln oder Blattern, deren klarer Saft schon in der geringsten Menge einen Gefunden vergiftet, sobald er in dessen Blutlauf aufgenommen wurde, und ihn unter den nämlichen Krankheitserscheinungen zum Erzeuger des nämlichen Giftes werden lässt. Beim Hospitalbrand, beim Leichengift genügt schon der Hauch, der am Messer des Chirurgen oder des Anatomen haftet, um jede offene Wunde zu vergiften: beim Milzbrand steht fest, dass eine Fliege das Gift von einem Kranken auf ein gesundes Tier übertragen kann.

Raum hatte Leeuwenhoek seine ersten Beobachtungen über die unsichtbaren Tierchen im Negenwasser bekannt gemacht, als die vorschnelle Hypothese phantastischer Ürzte das furchtbare Rätsel der Epidemien durch mikroskopische Pestsliegen zu erklären glaubte. Aber vergeblich blieb bis in die neueste Zeit jeder Versuch, in dem Ansteckungstosse, welcher durch Berührung die Krankheit erzeugt, oder in dem Kontagium mit Hülfe des Mikroskops lebende Wesen wirklich aufzusinden; es wäre ebenso leicht gewesen, die unsichtbaren Pfeile zu Gesicht zu bekommen, mit denen nach dem Glauben der Alten der ferntressende Apollon in seinem Zorn Menschen und Heerden hinstreckte.

Die erste Entdeckung mikrostopischer Organismen in einer ansteckenden Krankbeit verdanken wir Davaine, welcher im Jahre 1863 im Blute milzkranker Rinder einige Stunden vor deren Tode unzählige seine fadenförmige Körperchen beobachtete, die meist doppelt so lang als Blutkörperchen, sich durch Teilung vermehren und von den gewöhnlichen Fadenbakterien sich nur durch den Mangel an Bewegung unterscheiden; Davaine bezeichnete sie deshalb als Bakteridien. Auch der Mensch ist einer ansteckenden Krankheit unterworsen, die dem Milzbrand sehr nahe verwandt ist in diesen Fällen ist sein Blut von Bakteridien erfüllt.

Seit etwa vier Jahren hat sich die Zahl der Epidemien, bei denen Bakterien auftreten, sehr vermehrt¹²: es ist jedoch hier nicht am Orte die einzelnen Fälle zu besprechen; wir greifen nur einige der wichtigsten, am genauesten untersuchten Vorkommnisse heraus.

Jedermann weiß, wie erbarmungslos die Diphtherie so manches hosfnungsvolle Leben hinwegrafft; ein leicht übertragbares Rontagium sett sich gewöhnlich zuerst in Schlund und Luftröhre fest, erzeugt dort membranartige Gebilde, welche mit raschem Erstickungstod bedrohen. Das Mikrostop zeigt in sämtlichen Organen des Kranken unzählige Rugelbakterien in dichten Massen zusammensgehäuft, welche die Gewebe der Muskeln, Gefäße, Schleimhäute durchseten und belagern, überall Blutstauungen und Enzündungen herbeisühren und eine allgemeine Blutvergiftung zur Folge haben. Nur dann ist Genesung möglich, wenn die Rugelbakterien in den Nieren sich anhäufen und durch diese allmählich aus dem kranken Körper wieder ausgeschieden werden.

Die Blutvergiftung durch offene Bunden, welche im Kriege mehr Opfer wegrafft, als die feindlichen Rugeln, und wenn sie einmal in einem Hospital sich eingenistet, selbst leichte Verlezungen tödlich werden lässt, ist stets von der Versmehrung von Rugelbakterien begleitet, die bald vereinzelt, bald in rosenkranzsförmigen Fäden oder in schleimigen Hausen sich im Eiter und im Narbengewebe ansiedeln, oder ins Vlut aufgenommen und in verschiedenen Organen abgesett werden, wo sie Enzündung, Eiterung, Absessbildung herbeisühren, und durch zehrende Fieber die jugendlichste Lebensftraft erschöpfen. Auch in der klaren Lyms

¹¹Pustula maligna.

¹²Wir verdanken diese Tatsachen den Untersuchungen von Reber, Hallier, Zürn, Rlebs, Leiden, Recklingshausen, Jasse, Waldeyer, Orth, Buhl, Hüter, Dertel, Traube und Anderen.

phe der Ruh und Menschenpocken sind ähnliche Rugelbakterien in ungeheurer Menge und rascher Vermehrung aufgefunden worden. In den Ausleerungen der Cholerakranken, welche mit Reiswasser verglichen werden, hat Klob schon im Jahre 1866 unzählige Vakterien, zu gallertartigen Schleimmassen verbunden, nachgewiesen. Selbst die Seidenwürmer unterliegen einer Epidemie, bei der Vakterien auftreten.

Aber folgt denn auf der Gegenwart der Bakterien, dass dieselben auch wirklich mit der Epidemie zu schaffen haben? Ist es nicht eben so gut möglich, dass diese mikroskopischen Wesen nur zufällige und unwesentliche Begleiter der Krankheit sind, wie ja Bakterien sich bei jeder Gärung und Fäulnis entwickeln, ohne den mindesten Einfluss auf die Gesundheit außuüben?

Noch ist das durch die neuesten Forschungen verbreitete Licht nicht hell genug, um dieses dunkle Gebiet ganz überschauen zu lassen; noch ist der neu gewonnene Boden nicht so fest, um das Gebäude einer unerschütterlichen Theorie darauf zu gründen. Doch das wissen wir bereits, dass die Bakterien der Kontagien nicht die nämlichen Arten sind, welche Fäulnis erregen; sie lassen sich von den letteren meist schon unter dem Mitrostop durch ihre Form unterscheiden; sie steben unter ganz anderen Lebensbedingungen; ja sie kämpfen oft mit den Käulnisbakterien auf dem nämlichen Boden um das Dasein und werden von diesen ausgerottet, wenn sie unterliegen. Das hatte schon Davaine gefunden, als er beobachtete, daff mit beginnender Käulnif, oft schon 48 Stunden nach dem Tode eines Tierf, die Milzbrandbakterien verschwinden, sobald die gemeinen Stäbchenbakterien sich maßlof vermehren. Während aber ein Blutstropfen voll Milzbrandbakterien einem gesunden Rinde eingeimpft, nach 24 bis 36 Stunden den Tod bringt, so ist die Impfung mit gefaultem Blute ohne Bakteridien wirkungslos. Durch Eintrochnen verlieren die Milzbrandbakterien ihre Lebenffähigkeit nicht; daher gelingt auch die Ansteckung durch getrocknetes Blut.

Bekanntlich gehen durch ein dichtef Filter, einen Thonzylinder, oder durch eine Membran nur klare Flüssigkeiten; seste Körperchen und wären sie noch so klein, werden vom Filter zurückgehalten. Diese Erfahrung benutzten Chauveau und Rlebs, um zu beweisen, dass bei Pyämie, Septikämie und Blattern das Kontagium nicht in den flüssigen Teilen des Eiters oder der Lymphe seinen Sit haben könne, sondern in den mikroskopischen Rugelbakterien, welche sich darin

entwideln. Indem sie nämlich diese Anstedungstoffe durch ein Filter seihten, ermittelten sie, dass die klare Flüssigkeit, welche durch das Filter gegangen, ihre Anstedungsfähigkeit verloren hatte, während die auf dem Filter zurückgebliebenen sesten Substanzen wirksam blieben.

Alle diese Tatsachen machen es in hohem Grade wahrscheinlich, dass die in vielen Krankheiten bereits nachgewiesenen Bakterien die Träger und Erreger der Ansteckung, dass sie die Fermente der Kontagien sind. Wir halten an der Hossmung sest, dass sich an eine vollskändigere und klarere Erkenntnis dieser Tatsachen auch die Aussindung neuer Methoden knüpsen wird, um dem furchtbaren Feinde mit besserme Erfolge als bisher entgegenzutreten. Der Kunst des Arztes würden dadurch bestimmte Gesichtspunkte gegeben, auf welche sie hinzuwirken hat; es handelt sich um die drei Fragen: auf welchem Wege geschieht und auf welche Weise verhindert man die Übertragung von mikrostopischen Fermentors ganismen? und durch welche Mittel wird die Vermehrung derselben gehemmt? Alle Desinsektionsmaßregeln, alle Heilversuche müssten nach der einen oder der anderen Richtung hineingreisen; besonders würde auch das Wasser ins Auge zu fassen sein, von dem sestgestellt ist, dass es selbst in scheinbar reinstem Zustande doch die Zusuhr von Vakterien und andern Fermentorganismen leicht vermittelt.

Wir haben gesehen, dass bei aller Fäulnis und Gärung, dass in vielen Krankbeiten sich Bakterien entwickeln und in riesigen Verhältnissen vermehren, sobald ihre Reime einmal Zugang gefunden, dass diese kleinsten Wesen gerade durch ihre Massenentwicklung die großartigste Arbeit verrichten. Aber woher stammen die ersten Reime? Mit dieser Frage haben sich die Natursorscher bis in die neueste Zeit beschäftigt, und sie in verschiedenem Sinne beantwortet.

Die Einen sagten: bei der Fäulnis formen sich die organischen Elemente, welche den Körper des abgestorbenen Tiers gebildet hatten, in freier Schöpstungstraft zu selbständigen Wesen, die ganz verschieden von denen, auf deren Stossen sie hervorgegangen, doch ebenfalls belebt und fortpflanzungsfähig sind; so gestalten sich die Eiweiß und Fetttröpschen zu Vakterien, vielleicht auch zu Sese und Schimmelpilzen, selbst zu jenen Infusionstierchen, die bei der Verswesung nie sehlen. Man erfand sogar für diese Weise der Entstehung einen besondern Namen, Urzeugung (Generatio aequivoca).

Die Andern bestreiten die Möglichkeit dass lebende Wesen, seien sie noch

so klein und einfach, jemalf anderf entstehen alf auf Reimen, die von Wesen gleicher Art abstammen. Der Glaube an die Urzeugung der Bakterien sei der lette Uberrest eines uralten Aberglaubens, den die Leuchte der Wissenschaft noch nicht ganz verscheucht hat. Im Altertum meinte man, Schlangen und Frösche entständen auf dem Schlamm, den die Sonne bebrütet, Naupen erzeugten sich auf faulen Blättern, Ungeziefer auf Schmut, Würmer auf kranken Einges weiden, Maden auf verdorbenem Fleisch. Heuzutage weiß jedes Kind, dass alles dief Märchen sind; jede Hauffrau hat die Erfahrung gemacht, dass im Fleisch keine Maden entstehen, wenn durch ein Drahtgitter den Schmeißfliegen der Butritt verwehrt wird, die ihre Eier darin ablegen wollen; sie hat gelernt, durch forgfältiges Bedecken die staubseinen Schimmelsporen abzuhalten, welche mit anderem Staube auf der Luft abgesetzt, auf ihren eingelegten Früchten gern sich ansiedeln; sie weiß, dass Trichinen und Bandwürmer nur durch den Genuss von rohem oder halbgekochtem Schweinefleisch entstehen, in dem die Jugendzus stände dieser Ziere bereits vorhanden waren; selbst die Landwirte glauben nicht mehr, dass der Getreiderost durch Erkältung erzeugt wird, sondern dass er von Reimen abstammt, die von Berberizensträuchern oder von andern befallenen Halmen ausgestreut werden, und dass der Brand im Weizen verhindert wird, wenn man das Saatqut in Rupfervitriol einbeizt, um die anhaftenden Sporen des Brandpilzes zu töten.

Für die Bakterien und die ihnen verwandten Fermentpilze ist durch die von uns schon oben erwähnten Versuche der zweisellose Veweis geführt, dass sie eben so wenig durch Urzeugung entstehen, als andre lebende Wesen. Denn wenn Fleisch oder ein andrer stickstosshaltiger Stoff aus dem Tiers oder Pflanzenreich in einem Kölbchen gekocht, ja auch nur auf ca. 60° erhist wird, so werden alle darin vorhandenen Vakterien getötet; wird nun der Zutritt neuer Reime von Außen auf die eine oder die andre Weise verhindert, so entstehen nie und nimmer Vakterien von selbst, möge man das Kölbchen auch noch so lange ausbewahren; ein einziger eingeführter Reim dagegen genügt, um die Vermehrung und mit dieser die Fäulnis zu veranlassen. Entständen die Vakterien aus faulenden Stossen durch Urzeugung, so müsste die Fäulnis dem Erscheinen der Vakterien vorangehen; der Versuch aber zeigt das Gegenteil, dass die Fäulnis erst eine Folge der Vakterienentwickelung ist.

In den letten Jahren machte eine Theorie großes Aufsehen, welche die Entsstehung der Bakterien auf andre Weise zu erklären suchten. Die gewöhnlichen Schimmelpilze sollten unter gewissen Bedingungen bewegliche Keime von außersordentlicher Kleinheit gebären; diese Keime können sich, wurde behauptet, zu Bakterien, zu Hefe, schließlich wieder zu Schimmelpilzen fortentwickeln. Wenn sich in gewissen Krankbeiten Bakterien im Blut oder in andern Organen finden, so beruhe dies darauf, dass die Sporen gemeiner Schimmels oder Brandpilze im menschlichen Körper keimen, dass diese Keime erst als Bakterien schwärmen, sich aber bei geeigneter Kultur wieder zu verschiedenen Arten von Schimmelpilzen erziehen lassen. Aber eine vorurteilsfreie Rachprüfung hat nicht den geringsken Beweis dafür gegeben, dass Bakterien mit Hefe, Brands oder Schimmelpilzen in entwicklungsgeschichtlichem Zusammenhang stehen; die Bakterien entstehen, so viel wir bis sest wissen, immer nur aus Keimen gleicher Art.

Durch diese Tatsachen ist freilich die Hossnung zu Nichte gemacht worden, dass in der Entwickelung der Bakterien der Schlüssel gefunden werde für den Ursprung des Lebens auf der Erde überhaupt. Gäbe es auch nur ein einziges Wesen, welches aus ungeformter und lebloser Materie sich von selbst durch Urseugung noch heußutage zu einer lebendigen Zelle gestalten kann, so könnten wir uns vorstellen, dass die ersten Geschöpfe sich am Ansang auf die nämliche Weise gebildet haben. Nunmehr steht zwar fest, dass das Leben auf Erden einen Ansang gehabt; wie aber die ersten lebendigen Wesen entstanden, dafür fehlt es an aller Analogie; nach unserem bisherigen Wissen gleicht das Leben dem heiligen Feuer der Vesta, welches dadurch ewig erhalten wurde, dass immer der neue Brand sich an dem alten enzündete.

Der berühmte Physister W. Thomson hat in der geistvollen Rede, mit welscher er im vorigen Jahre die britische Natursorscherversammlung zu Schnburgh eröffnete, die Schluffolgerung gezogen: da das Leben auf der Erde nicht von selbst entstanden sein könne, so müsse es von einem andern Weltkörper auf den unsrigen übertragen worden sein. Wir wissen, dass die unzähligen Meteorsteisne, welche auf die Erde herabgefallen sind, einst selbstständige Weltkörper oder doch Teile von solchen gewesen; in einzelnen Meteoriten sind Rohle und kohlenhaltige Verbindungen nachgewiesen, deren Ursprung auf organische Vildung hindeutet. Es lässt sich die Möglichkeit denken, dass auch einmal ein lebender und

entwickelungsfähiger Reim die Ratastrophe überlebt habe, welche gewöhnlich den Ankömmling aus dem Weltraum beim Eintritt in unsere Atmosphäre und beim Berabsturz auf die Erde in Gluth versett; von solchem Reime mögen alle andern Wesen abstammen; so mag auf die lebensleere Erde einstmals der Ansang des Lebens vom Himmel herabgekommen sein, wie nach der Mythe der belebende Keuersunke durch Prometheus vom Olymp geholt wurde.

Die Entwidelungsgeschichte der Bakterien lässt vielleicht an einen andern Ursprung des Lebens auf der Erde denken. Wir haben das Gewicht einer Bakterie auf 0,0000000157 Marm. berechnet; wir wissen, dass diese unendlich leichten Rörperchen bei der Verdunstung durch die verdampfenden Wasserteilchen mit fortgeführt, in der Luft als Sonnenstäubchen umberschwimmen, und mit dem Staube wieder herabfallen, aber auch durch Luftströmungen über unermeffliche Streden geführt, und gewiff auch in außerordentliche Höhe getragen werden können. Möglicherweise werden diese Stäubchen durch aufsteigende Luftströme mitunter so weit emporgehoben, dass sie der Anziehung unseres Planeten entzogen, in den Weltraum gelangen; die Eristenz eines Weltstaubes ist auf verschiedenen kosmischen Lichterscheinungen wahrscheinlich. Der Weltraum ist außerordentlich talt; doch haben Versuche erwiesen, dass selbst ein vielstündiges Einfrieren bei -18° die Bakterien nicht tötet; sie verfallen durch die Rälte in Erstarrung, auf der sie beim Auftauen erwachen und unter günstigen Umständen sich sofort zu vermehren beginnen. Es ist vielleicht nicht unmöglich, dass ein von der Erde aufgestiegenes Bakterienstäubchen eine Zeit lang im Weltraum umberschwimmt, dann in die Atmosphäre eines anderen Weltkörpers gelangt, und wenn es auf diesem die geeigneten Lebensbedingungen vorfindet, dort sich weiter vermehrt. Ef lässt sich aber auch umgekehrt die Möglichkeit denken, dass auf irgendeinem Leben ernährenden Weltförper die Reime einer Bafterie oder eines ähnlichen äußerst kleinen und einfachen Wesens als Stäubchen in den Weltraum geführt werden, und daff ein folder Keim schließlich in die Atmosphäre der Erde gelangt und auf deren Boden sich absett. So lange das Urmeer, welches einstmals die ausglühendem Zustande erstarrte Erdrinde bedeckt hatte, noch über 60° erhist war, so lange war eine Entwickelung eines solchen Reimes nicht möglich; so bald aber die Abkühlung unter diesen Temperaturgrad gesunken war, musste der fremde Lebensteim in dem mit Salzen reich gesättigten Urmeer alle Bedingungen

Zu einer unbegrenzten Vermehrung finden; wir haben berechnet, dass in wenig Tagen der ganze Ocean mit solchen Wesen erfüllt sein könnte. Aus diesem ersten lebendigen Reim, in dem die Eigentümlichkeiten des Tiers und Pflanzenreichs noch nicht geschieden waren, konnte das Geset der Entwickelung, der Rampf ums Dasein, die natürliche Züchtung, die geographische Isolierung und manche andre bekannte oder unbekannte Kraft alle die verschiedenen Formen der Tiers und Pflanzenwelt fortbilden, welche in der Vergangenheit wie in der Gegenwart die Erde bewohnten und bewohnen.

Wir wissen wohl, dass wir mit solchen Betrachtungen weit über die Grenzen der erakten Naturwissenschaft hinausschweisen. Wenn der Natursorscher auch sich der Beschränktheit seines Wissens steht bewusst bleibt und mit Resignation sein Nichtwissen eingesteht, wo seine Werkzeuge, Versuch und Beobachtung, ihn im Stich lassen, so kann er doch nicht immer der Sehnsucht des Faust widerstehen "zu schauen alle Wirkungskraft und Samen," und er überlässt sich gern der Verlockung, durch die Phantasie die Lücken zu ergänzen, welche die nüchterne Forschung nicht außufüllen vermag.