Über die in Meteoriten entdeckten Tierreste

Von

Dr. D. F. Weinland

Mit zwei Holzschnitten

Esslingen a/N.

In Kommission bei G. Fröhner

1882

Kurz von Neujahr 1881 hat Herr Dr. O. Hahn in Reutlingen, von Beruf Jurist, dabei aber trefflicher Mineraloge und geübter Mikroskopiker, ein Werk: "Die Meteorite (Chondrite) und ihre Organismen" mit 32 Tafeln photographischer Abbildungen (Tübingen. H. Laupp) erscheinen lassen, in welchem er den Beweis unternimmt, dass die Meteoriten, besonders speziell die sogenannten Chondrit-Meteoriten, organische Gebilde enthalten, welche er, ohne eine nähere, systematisch zoologische Deutung zu versuchen, im Allgemeinen zu den Schwämmen, Korallen und Crinoiden stellte.

Die in obigem Werke rein mechanisch, also ohne Zutun eines Zeichners, abgebildeten Formen sind - diesen Eindruck muss wohl jeder Zoologe und Paläontologe bei deren Durchmusterung erhalten, - ihrem größeren Teile nach solche, bei denen man, wenn man sie unbefangen, d. h. ohne den Gedanken an die Herkunft betrachtet, unwillkürlich an organische Struktur denken muss, so wenig man zunächst zu einer solchen Annahme geneigt sein möchte und so sehr vielleicht auch der Text zu jenen Abbildungen wegen seiner für die Fachmänner gar zu begeisterten Sprache und kühnen Schlüsse zu kritischer Vorsicht aufzufordern scheinen könnte.

Da uns nun einige der Hahn'schen Bilder, wegen früherer Korallenstudien, die wir am Meere gemacht, näher interessierten, wandten wir uns an denselben um Überlassung der betreffenden Schliffe selbst, behufs näherer Untersuchung. Darauf hin hat uns Herr Dr. Hahn seine ganze, bedeutende, mit großen Opfern an Zeit und Geld hergestellte Sammlung von Meteoritenschliffen aufs Bereitwilligste zur Verfügung gestellt. Diese Schliffe, über sechshundert an der Zahl, stammen von achtzehn verschiedenen Meteoritenfällen, größtenteils von Dubletten der Wiener und der überaus reichen Tübinger Sammlung. Sämtliche Meteoriten sind sicher beglaubigt und gehören Fällen aus Europa, Asien, Amerika, zum Teil solchen aus dem vorigen Jahrhundert an.

Ein in dem letzten Jahre vorgenommenes, eingehendes Studium derselben hat uns nun folgende vorläufige Resultate ergeben:

1. Die wichtige, in ihren Folgen großartige Entdeckung Hahn's hat sich im Wesentlichen bestätigt. Wir haben es bei weitaus der Mehrzahl der von Hahn photographisch abgebildeten Formen ganz entschieden mit organischen Resten, mit organischer Struktur zu tun, ja diese Reste treten teilweise in solcher Menge auf, dass manche Schliffe weitaus der Hauptsache nach ganz aus ihnen

zusammengesetzt sind. Gut erhaltene Formen sind selten; der Mehrzahl nach ist es Detritus, es sind größere oder kleinere, meist aber sehr deutliche Bruchstücke, deren Formbeständigkeit jedoch bei Vergleich von vielen Schliffen und bei der Masse des Materials, sobald man sich in diese merkwürdige Formenwelt eingearbeitet hat, recht wohl erkannt werden kann, und dies um so sicherer, als einzelne Stücke ganz erhalten oder sogar zufällig sehr glücklich angeschliffen, uns bald aufs Schönste orientieren und als Leitstücke dienen können. wir schicken jedoch hier ausdrücklich voraus, dass die photographischen Abbildungen Hahn's, so verdienstlich sie sind und so sehr sein obengenanntes Werk immer eine Grundlage bleiben wird, doch häufig nicht die Klarheit der Bilder wiedergeben konnten, die wir unter dem Mikroskop selbst haben.

- 2. Die organischen Bruchstücke sind in den Chondritmeteoriten fest zusammengebacken und zusammengesintert, ganz wie der organische Detritus von Korallen, Schwämmen, Muscheln, Echinodermen u. s. w. in einer jüngsten Meereskalkbildung auf unserer Erde. Jene Reste in den Meteoriten sind in der Tat nichts als Petrefakten. Das Versteinerungsmaterial ist in der Regel, wo nicht immer, ein Silikat, öfters bläulich oder gelb gefärbt. Sehr häufig enthalten sie schwarze, verkohlte. organische Masse. punktförmig oder in größerer Ausdehnung. Einen Schmelzungsprocess haben diese Formen jedenfalls nicht durchgemacht. Die Schmelzung, wie sie bei dem Durchgang eines Meteoriten durch die Erdatmosphäre durch Reibung hervorgebracht wird, erstreckt sich, wie der Augenschein schon zeigt, nur auf seine Oberfläche und bildet so jene bekannte, schwarze Rinde oder Glasur, die nur eine Dicke von wenigen Millimetern hat. Das ganze Innere des Meteoriten, wenigstens des Chondritmeteoriten, bleibt davon unberührt.
- 3. Weitaus die Mehrzahl der in den vorliegenden Meteoriten enthaltenen Gebilde lässt sich den Klassen der Polycistinen, der Schwämme und der Foraminiferen unterordnen, wenn auch die Typen andere sind als die irdischen.
- 4. Von Korallenformen konnten bis jetzt drei Gattungen genügend nachgewiesen werden, wovon eine in einem Stück, das so vollkommen erhalten ist und die feinste mikroskopische Struktur so deutlich zeigt, wie man es bei irdischen Fossilien selten findet. Diese Korallen gehören mit Einer Ausnahme zu den ältesten Formen, die uns auf der Erde begegnen, zu den Favositen.
- 5. Von Crinoiden drei Formen, aber alle noch zweifelhaft.

- 6. Von Resten höherer Tiere, von Weichtieren, Gliedertieren oder gar Wirbeltieren haben wir bis jetzt keine Spur entdecken können.
- 7. Auch pflanzliche Reste konnten bis jetzt nicht sicher nachgewiesen werden. Doch begegnet man öfters Gewebefetzen, die wohl pflanzlicher Natur sein könnten.
- 8. Alle Lebewesen, deren Reste in den von uns untersuchten Meteoriten eingebettet sind und deren zoologische Deutung uns bis jetzt gelungen ist, haben im Wasser gelebt und zwar nach Analogie mit den entsprechenden irdischen Formen in einem Wasser, welches nie ganz frieren durfte.

Dieser Umstand scheint uns die neuerdings vielfach angenommene Hypothese von Schiaparelli, dass die Meteoriten den Kometen oder deren Schweifen entstammen, wenigstens für die Chondrit-Meteoriten auszuschließen, sofern konstant flüssiges Wasser auf Kometen nicht anzunehmen ist. Oder sollten die Kometen selbst vielleicht teilweise aus Resten zertrümmerter Planeten bestehen? (Siehe auch unter 10.)

- 9. Die ganze, von uns in den Hunderten der Hahn'schen Schliffe untersuchte Formenwelt, welche nach unserer vorläufigen Übersicht und Schätzung wohl über fünfzig verschiedenen Arten von Lebewesen angehören mag, von denen aber, da sie meist nur in Struktur- und Bruchstücken erhalten sind, nur eine Minderzahl genau zu beschreiben sein wird, scheint einer frühen Entwickelung der Lebewelt auf dem betreffenden Himmelskörper anzugehören, vielleicht einer noch früheren als die unserer ältesten Fossilien führenden Schichten der Erde.
- 10. Die ganze Tierwelt dieser Meteorite macht zunächst den Eindruck außerordentlicher Kleinheit der Formen im Verhältnis zu den irdischen. Diesen Eindruck erhielt schon Dr. Hahn und auch wir konnten uns demselben zuerst nicht entziehen. In der Tat sind Polypenkelche von 0,04 mm Durchmesser von irdischen Korallen bis jetzt nicht bekannt (doch gibt es von letzteren solche von 0,5 mm Durchm.). Aber wir dürfen daraus doch wohl noch keinen Schluss ziehen auf die Winzigkeit jener Tierwelt überhaupt im Vergleich zur irdischen. Die Größe der Polycistinenformen, die wir als solche erkannt (und die Hahn als sehr kleine Crinoiden anzusehen geneigt war), sowie der Foraminiferen, stimmt ganz wohl zu den irdischen. Überdies ist wohl zu bedenken, dass die oft

schwer zu deutenden Strukturfetzen und Maschengewebe aller Art, die in den Meteoriten zu Tage treten, recht wohl auch Reste größerer (aber schwerlich wohl höherer) Lebensformen sein können. Auch im jüngsten Meereskalk, wie er sich an unseren tropischen Meeresküsten aus Detritus der Schaltiere, Echinodermen, Korallen, Polythalamien u. s. w. bildet, sind größere, besser erhaltene Schalen u. s. f. immer verhältnismäßig selten, während mit dem Mikroskop deutbare Strukturreste von solchen häufig vorkommen. Dieselben sind aber hier leichter deutbar, weil wir die dazu gehörigen noch lebenden Formen leicht untersuchen können.

11. Die ganze Formenwelt dieser Meteoriten, soweit wir sie untersuchen konnten, macht den Gesamteindruck einer typisch zusammengehörigen. Es liegen Schliffe vor von achtzehn verschiedenen Meteorfällen, zum Teil aus dem vorigen Jahrhundert. Immer kehren dieselben typischen Formen, nur mehr oder weniger häufig wieder. Die Annahme scheint uns daher bis auf Weiteres gerechtfertigt, dass alle diese Chondritmeteriten von einem einzigen, außerirdischen Himmelskörper, vielleicht einem geborstenen Planeten herstammen mögen, der nach dem analogen Bau seiner Lebeformen wohl auch in seinen physikalischen, besonders aber den atmosphärischen und Wärmeverhältnissen unserer Erde nicht ganz unähnlich gewesen sein kann.

Wir wollen es nun versuchen, einige der auffallendsten Gattungen und Arten kurz zu charakterisieren, indem wir uns eine ausführlichere Beschreibung mit Abbildungen, besonders auch der inneren Strukturverhältnisse, zu welcher bereits viel Material vorliegt, vorbehalten.

I. Gitterthierchen, Polycistina.

1. **Phormiscus**. Nov. gen.

 $(\varphi O \rho \mu \iota \sigma x O \zeta = Binsenkörbchen.)$

Facettirte Kugeln, bestehend aus glashellen Kieselnadeln, die wie Binsenkörbchen in regelmäßigen Winkeln übereinander gelegt sind. Die Nadeln sind hohl, oft deutlich mit Löchelchen in Längsreihen versehen. Hierher:

Phormiscus vulgaris. N. sp.

(Abbildung: Hahn, Meteoriten, Taf. 29, Fig. 2.)

Durchmesser des Ganzen 0,18 mm. Durchmesser der Nadelbalken 0,05 mm. Vom

Meteorfall von Knyahinya.

Diese Phormiscusformen sind in Bruchstücken außerordentlich häufig in den Meteoriten von

Knyahinya. Es gibt verschiedene Arten, die häufigste aber ist die obengenannte, welche sofort an

den dicken, glashellen, in spitzen Winkeln übereinander gekreuzten Nadelbündeln zu erkennen ist.

Phormiscus grandis. N. sp.

(Abbildung: Hahn, Meteoriten: Taf. 29, Fig. 6.)

Feinmaschiger als die vorige Art. Die Nadeln kreuzen sich unter weit mehr Winkeln.

Die besten, erst nachträglich gefundenen, auch den inneren Bau zeigenden Exemplare sind

noch nicht abgebildet. Der Durchmesser eines solchen beträgt 3,2 mm. Es ist also ein großes, mit

bloßem Auge recht wohl sichtbares Tierchen.

Dass diese *Phormiscus* zu den Polycistinen gehören, scheint uns sicher. Die hohlen, teilweise

durchlöcherten Kieselnadeln, besonders aber die Kugelformen, die nur bei frei im Wasser sich

bewegenden Tieren denkbar ist, weist zunächst darauf hin, und nicht auf Schwämme, an die man

sonst auch denken könnte. Jedenfalls aber bilden sie eine eigene Familie, die wir Phormiscidae

nennen wollen. - Crinoiden, wie Hahn früher vermutete, sind es sicher nicht.

2. Thyriscus. Nov. gen.

 $(\theta \nu \rho \iota \varsigma = \text{Fenster.})$

Gleichfalls facettirte Kugeln, bestehend aus runden Kieselbällchen, welche in der Art

angeordnet sind, dass sie viereckige, nach innen sich verjüngende Trichter wie Fenster oder noch

besser: Schießscharten bilden. Die Bällchen sind hohl und mit öfters deutlichen Löchelchen

versehen. Gehört ohne Zweifel auch in die Familie der Phormiscidae.

Thyriscus formosus. N. sp.

(Hahn: Taf. 30, Fig. 3.)

Durchmesser des ganzen, hier abgebildeten Bruchstücks 0,70 mm. Durchmesser eines

ganzen Trichters 0,35 mm. Durchmesser der einzelnen Bällchen 0,01 mm. Distanz der Löchelchen

von einander 0,006 mm. Durchmesser der Löchelchen 0,001 mm. Vom Meteorfall von Knyahinya.

3. Goniobrochus. Nov. gen.

 $(\gamma \omega \nu \iota \alpha = \text{Winkel}, \beta \rho \delta \gamma \circ \zeta = \text{Masche.})$

Wir begründen diese Gattung auf sehr charakteristische Strukturstücke, die öfters in unseren

Schliffen vorkommen und von denen Hahn in seinen Meteoriten, Taf. 13, Fig. 6, eines abgebildet

hat. Es ist ein fest zusammengefügtes, netzartiges Kieselgewebe aus innig verwachsenen, eine

zusammenhängende Scheibe darstellenden Kieselbällchen gebildet, die sich unter Winkeln kreuzen

und fast gleichseitige, viereckige Maschen bilden. Da, wo sich die Leisten kreuzen, entstehen

Buckeln wie Knöpfe eines Netzes. - Wir können wohl auch diese Gebilde am ehesten bei den

Polycistinen unterbringen, unter denen Häckel ähnliche Skelettformen in seinem schönen Werke:

"Die Radiolarien" Taf. 29 abgebildet hat. Besonders kämen in Betracht die Gattungen Stylodictya

und Stylospira, die ganz ähnliche geknöpfte Netzformen in ihrem inneren Skelett aufweisen. Doch

könnte man auch an Schwämme, z. B. an manche Scyphia denken; oder an Bryozoen?

Goniobrochus Häckelii. N. sp.

Diese schon von Hahn (siehe oben) abgebildete Form stammt von dem Meteorfall von

Cabarras. Das vorliegende Stück erscheint in dem Schliff fächerförmig ausgebreitet, misst in die

Quere 0,5, die Höhe 0,4 mm. Die Dicke der Bällchen beträgt 0,01, der Durchmesser einer Masche

ebenso 0,01 mm. Das Ganze scheint eine runde Scheibe oder vielleicht auch einen Trichter gebildet

zu haben. Wir nennen die Art zu Ehren unseres einstigen Studiengenossen, des berühmten

Begründers unserer genaueren Kunde von der großen Welt dieser kleinen Organismen.

II. Schwämme und Foraminiferen

Familie: Uranidae. Nob.

Ein sehr charakteristischer Meteoritentypus von niederen Tierformen, der sehr häufig in den

verschiedensten Meteorfällen vorkommt und - wegen der von uns nachträglich aufgefundenen

ausgezeichneten Durchschnitte bis jetzt am besten von allen Meteorformen - kaum die Hahnia (s.

unten) ausgenommen - studiert werden konnte. Derselbe lässt sich an keine der uns bekannten

irdischen Tierformen genauer anschließen. Ob Schwamm, ob Foraminifere, diese Frage wird

schwer zu entscheiden sein, wie dies ja bekanntlich auch bei manchen fossilen irdischen Formen der

Fall ist. Vielleicht haben wir es hier mit einer Mittelform zu tun.

Es sind festsitzende, kissenförmige Stöcke mit poröser und fein lamellöser Rindenschicht

und einem gröberen, gleichfalls lamellösen, Lakunen oder Kammern bildenden inneren Skelett.

1. Urania, Hahn (sensu strict.).

Wir adoptieren in engerem Sinne den Gattungsnamen von Hahn, den derselbe schon in

seinem Werke "Die Urzelle", allerdings als Pflanzengattung, für eine sehr charakteristische

Meteoritenform aufgestellt hat. Ich habe seitdem an einer Reihe von günstigen Durchschnitten diese

interessanten, in den Meteoriten von Knyahinya besonders häufigen Formen studieren und zeichnen

können, so dass ein Zweifel über ihre Tiernatur, die auch Hahn später in seinem Meteoritenwerk

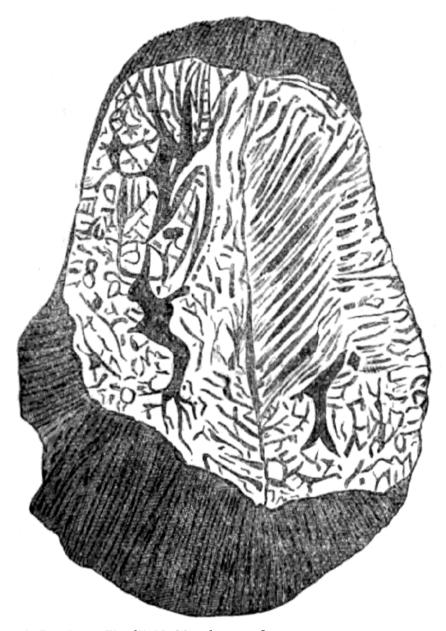
angenommen hat, nicht mehr bestehen kann. Es sind immer smalteblaue, kissenförmige, wegen der

sehr feinen, zart gestrichelten, porösen Oberhaut samtartig anzusehende, wahrscheinlich auf Stielen festgewachsene Stöcke. Auf dem Querschnitt unterscheidet man sofort eine durchscheinende porösen Rindenschicht. Das ganze Innere des Kissens besteht aus einem ziemlich unregelmäßigen Maschengewebe, in welchem radiär von der Rinde nach dem Zentrum zu streichende Lamellenzüge deutlich werden, welche lakunenartige Hohlräume oder Kammern zwischen sich lassen.

Urania Salve. N. sp.

So wollen wir sie nennen, denn es war der erste Gruß einer organischen Form aus einer anderen Welt, das erste Wesen, das Hahn als ein organisches erkannte, wenn auch zuerst als eine Pflanze beschrieb. Diese Art erscheint in großen und kleinen, ganzen Individuen und einer Menge von Bruchstücken, sehr häufig in den Meteoriten, besonders in denen von Knyahinya. Durchschnittliche Größe 1 mm. Dicke der außen stets smalteblauen Rindenschicht 0,04 mm. Hahn hat sie vielfach abgebildet. Die große Figur von Tafel 2, alle Figuren auf Tafel 3, sodann Fig. 1, 4 und 6 auf Tafel 4, 1 und 4 auf Tafel 5 gehören hierher. Diese Art zeigt oft sehr eigentümliche, parallele oder radiär laufende, tiefe Längsfalten auf der Oberfläche, so dass man an eine gewisse Elastizität der Rindenschicht im Leben denken möchte.

2. **Pectiscus**. Nov. gen.


$$(πηxτός = gekämmt.)$$

Lappige, wahrscheinlich mit breiter Basis festsitzende Stöcke. Gehören zu derselben Familie wie *Urania*, zu den *Uranidae*. Aber die Rindenschicht ist hier eine andere, gröbere, wie gekämmt, d. h. in stärkeren, mehr oder weniger radiär ausstrahlenden Rippen (Lamellen) gebildet, die oft an die Septa gewisser Korallenformen, z. B. der *Fungia*, erinnern. Der innere Bau aber, von dem wir mehrere ganz vortreffliche Durchschnitte vor uns haben (siehe Fig. 1 [80mal vergrössert]), besteht ähnlich wie bei *Urania* aus einem lamellösen, Kammern bildenden Gewebe, das nichts mit der Korallenstruktur zu tun hat. Es gibt eine Reihe von Arten, zum Teil offenbar sehr große, von welchen letzteren aber meist nur das grobe, innere, gekammerte Maschengewebe erhalten ist.

Pectiscus Zittelii. N. sp.

Die häufigste Art. Erinnert der äußerlichen Erscheinung nach durch die radiären Strahlen und oft auch durch die Gesamtkonturen häufig an die bekannten Kammmuscheln (Pecten). Doch halten die Lappen dieser Stöcke durchaus keine regelmäßige Gesamtform ein. Immer sind sie an den Rändern abgerundet, oft ist der Rand durch seichte Kerben in kleinere Lappen geteilt. Durchmesser der Stöcke von 1 bis 3 mm. Die feinen Rippchen auf der grauen Rinde sind durchschnittlich 0.04 mm von einander entfernt.

Sehr häufig in den Meteoriten, besonders in denen von Knyahinya, auch von Siena. Auch das große Gebilde, an das unsere *Hahnia* (siehe unten) wie angeklebt erscheint, ist ein solcher *Pectiscus*.

Figur 1: Pectiscus Zittelii, N. 80mal vergrößert.

In Fig. 1 haben wir ein kleines Exemplar abgebildet. Es stammt von dem Meteorfall von Iowa und liefert zugleich ein deutliches Bild der inneren Struktur. Oben und unten ist die hier grau gefärbte äußere Rinde des Stockes erhalten. In der Mitte hat der Schliff dieselbe rasiert und zwar ungleich auf den beiden Seiten; rechts tiefer, daher man dort die vom Boden hereinragenden Lamellen noch ziemlich parallel liegen sieht. In der linken Hälfte dagegen ist der Schliff gerade durch die innerste, unregelmäßigere, lakunöse Mittellage des Lappens durchgegangen. Das ganze Stöckchen ist 1,6 mm lang, 1,2 mm breit. - Einen ähnlichen, ebenso instruktiven Durchschnitt haben wir von Knyahinya.

Wir erlauben uns, die Art nach Herrn Professor Zittel, dem gründlichen Erforscher der fossilen Schwämme, zu benennen.

Pectiscus rudis. N. sp.

Eine kleinere Form mit noch gröberen Leisten.

3. Callaion. Nov. gen.

(xάλλαιον = Hahnenkamm.)

Eines der auffallendsten und schönsten Gebilde in unserer Meteoritenfauna. Eine feine, wie manche Hahnenkämme gebuchtete Form, die in ihrem auffallenden Habitus an manche Korallen (Fungia, Herpetolithus) erinnert, aber nach dem mikroskopischen Bau ihrer Rindenschichte doch wohl auch zu den Uraniden gehört. Die dünne, äußerste Rindenschicht ist eben so zart bläulichgrau, samtartig, dabei aufs Feinste gestreift, wie bei Urania. Auf dem Durchschnitt der erhabenen Kämme, die die Buchten des Stockes von einander scheiden, und ebenso an einem feinen Längsschliff erkennt man das nächsttiefere, unter der grauen Rinde liegende Gewebe als aus lauter auseinander laufenden, parallelen etwas strahlig sehr regelmäßigen zusammengesetzt, die durch schiefe Brücken mit einander verbunden sind Der innerste Bau, wie wir ihn von Urania und Pectiscus kennen, tritt leider an dem besterhaltenen Unikum nirgends zu Tage, da der Schliff nirgends tief genug eingedrungen. - Wir wurden bei dieser Form aufs Lebhafteste an den Querschliff von Carpenteria Rhaphidodendron, Moebius, einer Foraminifere von Mauritius, erinnert, den derselbe in seiner schönen Abhandlung über das Eozoon Canadense (Palaeontogr. XXV, Taf. 40 Fig. 60) gegeben.

Callaion Paulinianum. N. sp.

Ist in Hahn's Meteoritenatlas noch nicht abgebildet.

Großer Durchmesser des Stöckchens 2,8 mm, der kleinere 2 mm.

Derselbe stellt sich schon dem bloßen Auge als ein graues, marmoriertes Fleckchen dar. Die parallelen Lamellen, die als zarte Streifen auf der bläulichen Oberfläche erscheinen, sind 0,002 mm von einander entfernt. Die Lamellen der nächsten, gröberen Schicht 0,01 mm. Die einzelnen Buchten innerhalb des Stockes erscheinen bald als längliche Talrinnen von 0,06 mm Durchmesser, bald als rundliche, oder mehr oder weniger eckige, kraterartige Vertiefungen von 0,05 bis bis 0,3 mm Durchmesser. Zwischen diesen Tiefen verlaufen Kämme ganz wie bei *Manicina areolata* und vielen anderen Korallen, aber von wechselnder Breite, 0,05 bis 0,2 mm Durchmesser.

Der Schliff stammt vom Meteorfall von Iowa (Febr. 1847). Leider ist nur ein Exemplar gut erhalten, doch begegneten uns auch in den Meteoriten von Knyahinya öfters Rudera dieser Art.

Wir erlauben uns, diese Art zu benennen zu Ehren von Fräulein Pauline Schloz, der verdienten Schwägerin des Herrn Dr. Hahn, welche denselben bei der schwierigen Herstellung der vielen Meteoritenschliffe mit aufopferndster Hingebung unterstützt hat.

4. **Glossiscus**. Nov. gen.

$$(\gamma \lambda \tilde{\omega} \sigma \sigma \alpha = \text{Zunge.})$$

Abgerundete, zungenähnliche Lappen bildende Stöcke. Die Oberhaut aus sechseckigen Tafeln zusammengesetzt. Poren in vertieften Furchen und rundlichen, vertieften Nestern; keine Spur von Strahlenrippen wie bei den Uraniden. Ohne Zweifel zu den Schwämmen gehörig.

Glossiscus Schmidtii. N. sp.

Von Hahn noch nicht abgebildet. An dem vorliegenden, auffallend milchweiß gefärbten Stöckchen erscheinen die Poren und Porennester schwarz getüpfelt, indem sich schwarze, organische Masse in den Poren festgesetzt hat, wie dies auch sonst sehr häufig in diesen Meteoritenversteinerungen vorkommt. Die ganze Länge des Lappens beträgt 1,7 mm, der Querdurchmesser 0,8, Durchmesser der Porennester 0,03 bis 0,05, der Porenfarchen 0,02 bis 0,04 mm, der sechseckigen Täfelchen 0,02 mm.

In einem Schliff von Knyahinya.

Wir erlauben uns die Art zu Ehren des berühmten Erforschers der lebenden Schwämme, Herrn Prof. Oscar Schmidt in Strassburg, zu benennen.

5. Carydion. Nov. gen.

$$(x\acute{\alpha}\rho\nu o\nu = \text{Nuss.})$$

Glashell durchsichtige, wie die meisten dieser Organismen, in Kieselerde versteinerte Gebilde, die auf dem Durchschnitt ganz einer Nuss mit dicker Schale und Kammern im Inneren gleichen. Die Kammern sind durch ein dickes Balkenwerk hervorgebracht, die dicke Schale ist sehr porös.

Diese von Hahn nicht abgebildeten Formen sind ziemlich häufig in den Meteoriten; wahrscheinlich sind es schwammähnliche Gebilde. Wir wollen nur eine Art beschreiben, deren Bild wir später geben werden.

Carydion solidum. N. sp.

Durchmesser des Ganzen 0,32 mm. Die Löchelchen, d. h. Kanälchen in der Schale haben 0,01 bis 0,005 mm Durchmesser. Die Dicke der das Innengerüste bildenden Balken beträgt 0,02 bis 0,05 mm. Die durch die Balken entstehenden Maschen erscheinen drei- oder viereckig. Die Dicke der Rinde oder Schale ist 0,09 mm; die äußere Kontur des Ganzen rundlich eckig; die Hohlräume sind meist mit schwarzer, organischer Masse ausgefüllt. Auch die Poren der Rinde sind schwarz tingiert. Die feinere Struktur der Rinde zeigt bei starker Vergrößerung rundliche Zellen. - In einem Schliff von dem Meteorfall von Cabarras.

6. Brochosphaera. Nov. gen.

(βρόχος = Masche, und σφαῖρα = Kugel.)

Sehr häufig in den Meteoriten, besonders in denen von Knyahinya, finden sich ziemlich ausgedehnte, großmaschige Netze, deren breite Faden aus mehr oder weniger deutlichen, meist sechseckigen Zellen zusammengesetzt sind. Den Fäden entlang hängen häufig schwarze Partikelchen verkohlter, organischer Substanz an. In der Regel sind diese Netze nur in Fetzen erhalten und es war lange unmöglich, eine Vorstellung von einem Ganzen zu bekommen, endlich aber begegnete mir in einem Knyahinyaschliff ein Gebilde, das einige Aufklärung zu geben scheint. Es ist dies eine große, mit bloßem Auge schon leicht sichtbare, angeschliffene Halbkugel, deren äußere Konturen im Wesentlichen erhalten sind und deren Inneres nun eben auf's Schönste ein solches Maschenwerk, wie wir es oben beschrieben, enthält. Der ganze Rand der Halbkugel, soweit er von dem Schliff nicht getroffen worden, besteht aus lauter ziemlich gleich großen, sechseckigen Zellen oder Plättchen. Der innere Raum der Halbkugel, der durch den Schliff bloßgelegt worden, ist durchzogen von einem vielmaschigen Netz, dessen Fäden aus eben solchen Zellen bestehen, wie jene äußeren.

Wir können dieses Gebilde kaum in einer anderen, unserer bekannten Tiergruppen unterbringen, als etwa in der der Schwämme, aber auch hier würde es einen ganz neuen Typus begründen. - Keine dieser Formen ist von Hahn abgebildet.

Brochosphaera grandis. N. sp.

So wollen wir jene Art nennen, von der das bis jetzt besterhaltene Stück, jene große Halbkugel, vorliegt. Der Durchmesser der ganzen Kugel beträgt 3,20 mm. Der Durchmesser der Maschen im Inneren 0,2 bis 0,4 mm. Der Durchmesser der oft länglichen, oft aber auch ziemlich gleichseitigen, sechseckigen Zellen oder Plättchen, die das Ganze zusammensetzen, beträgt 0,03 bis 0,05 mm. Die durch die dicken Fäden gebildeten rundlichen Maschenräume sind in dem vorliegenden Petrefakt mit einem durchsichtig glasigen, vielfach mit feinen Risslinien durchsetzten Silikat ausgefüllt.

Stammt von dem Fall von Knyahinya.

Brochosphaera hexagonalis. N. sp.

Bei dieser zweiten Art sind die genannten Maschenräume konstant sechseckig, sie liegen in dem Netze wie große Kristalle. Ein Stück dieser Art, von dem auch die äußeren Konturen ziemlich gut erhalten, misst im Durchmesser 1,20 mm. Die mit Silikat ausgefüllten sechseckigen, selten fünfeckigen, kristallähnlichen Maschen messen 0,2 mm; die Zellen oder Plättchen, die das Netzwerk zusammensetzen, 0,03 bis 0,04 mm.

Stammt von Knyahinya. Auch in einem Präparat von Cabarras findet sich ein sehr ähnliches. In einem anderen Präparat von Knyahinya erscheinen die großen, sechseckigen Maschen regelmäßig in zwei Formen, in großen von 0,26 mm und in kleineren von 0,4 bis 0,3 mm Durchmesser

7. **Dicheliscus**. Nov. gen.

 $(\theta i \chi \eta \lambda o \zeta = \text{mit gespaltenen Klauen.})$

Eine auffallende und charakteristische Form, bestehend aus einer zusammenhängenden Traube oder Scheibe von rundlichen Blasen. Der mehr oder weniger stark eingedrungene Einschliff in dieselben gestattet bei manchen eine deutliche Einsicht in das hohle Innere. Man sieht dann ein senkrechtes Diaphragma mitten durch die Blase gehen. Diese Scheidenwand ist immer an der einen Seite dicker als an der anderen; sie entspringt mit breiter Basis von dem Ende der herzförmigen Blase und geht lamellenartig sich verdünnend bis zum anderen Ende. Eine solche angeschliffene Blase mit ihrem Diaphragma gibt etwa das Bild eines zwiegespaltenen Hufs, daher unser Name: Dicheliscus. Dass die Blasen unter sich kommunizieren, scheint aus mehreren Stellen des Präparats deutlich, wie wir solche später abbilden werden.

Wir möchten bis auf Weiteres diese Gebilde am Ersten zu den Foraminiferen stellen.

Dicheliscus uva. N. sp.

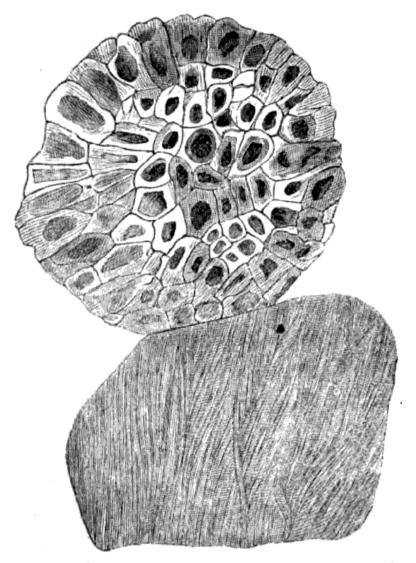
Ist von Hahn noch nicht abgebildet. Der Durchmesser des ganzen Stocks beträgt 1,2 mm. Länge der größten, angeschnittenen Blase 0,15 mm. Dicke der Scheidewand 0,01. Die Blasen in dem vorliegenden Präparate sind von verschiedener Größe und alle Übergänge des Anschliffs werden daran deutlich.

Vom Meteorfall von Knyahinya.

Weitere Formen:

Kleine Bruchstückchen von regelmäßig gewundenen Gebilden mit polythalamienartigen Kammern, die vielleicht zu diesen Rhizopoden gehören, sind uns bei der Durchsicht der Meteorschliffe hin und wieder begegnet. Aber ihre Erhaltung ist meist keine günstige. Ein sehr hübsches solches Stückchen, wie ein kleiner Nautilus, steckt in einem Meteoritenschliff von Cabarras. Der ganze Durchmesser des Schälchens wäre etwa 0,5 mm, der Kammern 0,05 bis 0,1 mm. Doch bedürfen diese Formen weiterer Prüfung, ehe wir sie festzustellen wagen.

III. Korallen.


1. **Hahnia**. Nov. gen.

Dies ist die Form, die mich nach den stärksten Zweifeln zuerst dazu bestimmte, ein genaueres, zoologisches Studium der von Hahn entdeckten Gebilde vorzunehmen. Sie allein wäre auch in der Tat schon entscheidend. Freilich genügen auch hier die photographischen Bilder Hahn's in seinem Meteoritenwerk Taf. 1, 5 und Taf. 10 Fig. 3 u. 4 bei weitem nicht. Eine gelbe Eisenfärbung, die auf dem Präparate liegt, verursachte sehr störende, schwarze Schatten und überhaupt ist die mikroskopische Photographie noch nicht so weit gelangt, die Bilder mit der Schärfe wiederzugeben, wie sie sich unserem Auge darstellen. So schätzenswert die photographische Abbildung für größere Formen ist, wie die schönen Korallenwerke von Dr. Klunzinger und Rominger beweisen, so wird doch bis auf Weiteres für die mikroskopische Darstellung die mit vollem Verständnis zeichnende Hand der Forschers selbst durch jene

mechanische Darstellung noch nicht, vielleicht niemals ersetzt. Unsere *Hahnia*, Fig. 2, ist leider bis jetzt ein Unikum geblieben. Der betreffende Schliff gehört zum Meteorfall von Knyahinya. Er ist einer der glücklichsten und enthält außerdem noch sehr gute *Urania*-, *Pectiscus*- und *Phormiscus*-Reste.

Gattungscharaktere von *Hahnia*: Polypenröhren mikroskopisch klein, ungleich, große mit kleinen gemischt, mehr oder weniger polygonal mit abgerundeten Ecken. Die Wände der Röhren dick, mit scharfer, lineärer Begrenzung nach außen. Bei stärkerer Vergrößerung wird zwischen den die benachbarten Polypen begrenzenden Linien ein gleichmäßig dickes Zwischenröhrengewebe (Cönenchym) sichtbar, welches auf dem Querschliff ein deutliches Netzwerk darstellt. Innere Längsleisten (Septa) in den Röhren fehlen, ebenso die Querscheidewände (Tabulae), welche letztere bekanntlich bei vielen ähnlichen, irdischen Korallen die einzelnen Röhren in Etagen übereinander teilen. Stock wahrscheinlich inkrustierend, flach, kuchenförmig.

Die Gattung gehört wahrscheinlich zu den *Favositidae*, einer Korallenfamilie, die auf der Erde längst ausgestorben, in der Silur- und Devon- Formation ihre Blüte gehabt hat und von der eine große Zahl von sehr verschiedenen Formen, die aber noch einer weiteren zoologischen Sichtung bedürfen, in der Paläontologie beschrieben ist.

Figur 2: Hahnia meteoritica, N., an einem Pectiscus sitzend. 80mal vergrössert.

Durchmesser des ganzen Stöckchens 0,90 mm, also eben noch mit dem bloßen Auge als eine kleine Linse im Schliff zu erkennen. Durchmesser der einzelnen Polypenkelche 0,04 bis 0,1 mm. Durchmesser der gelben Zwischenstraßen, des Cönenchyms, 0,008 mm. An den Ecken schwillt dasselbe, wie häufig bei den Favositen, etwas stärker an. Die frappante Ähnlichkeit dieses Stöckchens mit *Favosites polymorphus* aus dem Devon ist schon Prof. Quenstedt aufgefallen, als ihm Dr. Hahn das Objekt zeigte. Noch mehr ist es mit *Favosites bimuratus* aus dem Devon von Bensberg zu vergleichen, wo die Polypenwände und das Cönenchym außerordentlich ähnlich sich darstellen, freilich immer mit Ausnahme der Größenverhältnisse. Denn bei *Favosites bimuratus* messen die Kelche immer noch ein halb bis 1 mm.

Die einzelnen Polypenkelche bei unserer *Hahnia* sind mit einer schwarzgrauen Masse gefüllt, die Wände erscheinen grauweiß, das Cönenchym gelb. Durch einen glücklichen Zufall wurde dieser Korallenstock gerade von oben getroffen. In der Mitte des Bildes erscheinen die Kelche fast intakt; rings am Rande herum, besonders auf der linken Seite, sind sie etwas verschliffen, so dass man dort für die Strukturerkenntnis sehr wertvolle Halblängsschliffe durch die Polypenröhren erhält und den Mangel von Querscheidenwänden, sowie auch von Gefässlöchelchen (Sprossenkanälen) konstatieren kann.

Hahn's Abbildung Taf. 1 f. 5 und Taf. 10 f. 4 ist leider durch die gelbe Färbung des Präparats, die in der Photographie schwarz kommt, beeinträchtigt.

2. Calamiscus. Nov. gen.

 $(x\alpha\lambda\alpha\mu\iota\sigma x\zeta = \text{R\"ohrchen.})$

Favositenartige Polypenstöcke, bestehend aus regelmäßig parallel nebeneinander oder auch etwas radiär verlaufenden, meist glashell durchsichtigen Röhren ohne Längsleisten (Septa) im Innern, aber mehr oder weniger regelmäßig durch Querscheidewände oder Böden (Tabulae) in Etagen geteilt und oft sehr regelmäßig mit feinen Löchelchen, die die Gefässcommunication zwischen den benachbarten Röhren vermitteln, ausgestattet. Diese vollkommene Übereinstimmung der Struktur mit der vieler fossiler Favositkorallen aus der Devon- und Silur- Formation der Erde lässt uns trotz der Kleinheit der vorliegenden meteoritischen Formen nicht wohl an etwas Anderes denken, als an Korallenpolypen. Leider sind fast nur Seitenschliffe erhalten, weil in dieser Richtung die Polypenstöcke am leichtesten zerbrechen. Bei dem Mangel befriedigender Querschliffe wird eine Unterscheidung der Arten von *Calamiscus* sehr schwer; es bleibt dazu fast nur übrig: die durchgängige Weite der Polypenröhren, die Distanz der Böden und der Gefäßlöcher von einander, die waagerechte oder schiefe Richtung der Böden u. dgl., lauter Merkmale, die auch bei einer und derselben Art schon ziemlich variieren. - Diese Gebilde sind außerordentlich häufig in den Meteoriten, besonders in denen von Knyahinya.

Calamiscus Gümbelii. N. sp.

(Abbildung: Hahn, Meteoriten: Taf. 14 u. 15.)

Wir stützen diese Art auf eines der besterhaltenen Stöckchen in einem Meteoritenschliff von

dem Fall von Cabarras. Es ist ein länglicher, nach unten spitz verlaufender Stock, wie

Favositenstöcke es wegen der Art ihrer Vermehrung durch Zwischenschiebung unten spitziger,

neuer Röhren gewöhnlich sind. Das vorliegende Stöckchen hat einen Durchmesser von 0,46 mm

und eine Höhe von 1 mm, ist also recht wohl noch mit bloßem Auge sichtbar. Der Durchmesser der

Röhren beträgt 0,01 mm, die Distanz der an diesem Polypenstöckchen außerordentlich schön

sichtbaren Gefässlöchelchen von einander 0,005 bis 0,01 mm. Die sägenähnliche Auskerbung an

der Seite einer Röhre in dem Hahn'schen Bilde entstand durch eine zufällige Anschleifung

derselben, in der Art, dass die trichterförmige Einbuchtung der Löchelchen zu Tage tritt. Die Böden

stehen etwas schief in der Röhre sehr unregelmäßig weit von einander und sind überhaupt in diesem

Stock seltener als in manchen anderen.

Wir erlauben uns, diese Art nach Herrn Director Gümbel in München zu benennen, der die

Chondrit-Meteoriten zuerst einer genauen mikroskopischen Untersuchung unterzogen und bei

seiner trefflichen Beschreibung der Chondren in seiner Abhandlung über die in Bayern gefundenen

Steinmeteoriten (Sitzungs-Ber. der K. bayer. Akad. d. Wissensch. zu München 1878, S. 14)

wahrscheinlich solche Calamiscusformen, die aber weniger gut erhalten waren, vor sich gehabt, sie

aber mineralogisch zu deuten versucht hat.

2. Bosea. Nov. gen.

Eines der schönsten Meteoritengebilde, ohne Zweifel ein Stückchen eines Korallenstocks.

Ein ziemlicher Teil der Oberfläche mit vielen deutlichen, größeren und kleineren Sternchen ist an

dem Unikum erhalten. Die Sternchen bildeten, wie es scheint, erhabene, abgeflachte Kegelchen; sie

haben bis zu zehn nach außen sich verbreiternde Septa, getrennt durch dunklere Furchen. Die Mitte

des Sternchens, von der die Septa und die Furchen ausgehen, besteht aus eckigen Körnchen. Das

Coenenchym oder Zwischenfeld zwischen den Sternchen erscheint mit eckigen Plättchen

gepflastert. Kleinere, offenbar jüngere Sternchen mit weniger Strahlen erscheinen zwischen den alten, ganz wie bei einer Astraea.

Ich erlaube mir, die Gattung zu benennen zu Ehren von Herrn Carl Graf Bose und Frau Louise Gräfin Bose geb. Gräfin von Reichenbach-Lessonitz, welche beide selbst ausgezeichnete Naturkenner, an diesen Meteoritenstudien des Verfassers den lebhaftesten Anteil genommen. Wie bekannt hat Frau Gräfin Bose vor nicht langer Zeit durch eine Stiftung in Frankfurt a. M. ihr Interesse für die Erforschung der Natur in großartigster Weise betätigt.

Bosea cyanea. Nov. Sp.

Das genannte Stöckchen, am Rande überall abgebrochen, hat, soweit erhalten, eine Länge von 1,44 mm, eine Breite von 0,88 mm. Der Durchmesser der Sternchen beträgt 0,04 bis 0,08 mm. Der Durchmesser der vertieften, von der Mitte ausstrahlenden Furchen ist 0,003 bis 0,006 mm. - Das Versteinerungsmaterial zeigt dieselbe smalteblaue Farbe, wie bei Urania salve. - Dieses Unikum steckt in einem Schliff vom Fall von Knyahinya.

IV. Crinoidea.

Unser verehrter Freund, Dr. Hahn, hat in seinem Meteoritenwerke, Taf. 16 - 30, eine größere Anzahl von Formen vorläufig zu dieser niedersten Klasse der Echinodermen stellen zu müssen geglaubt. Wir haben nach genauerem Studium ihrer Organisation, soweit diese zu entziffern, eine Reihe derselben den Polycistinen und Schwämmen, beziehungsweise Foraminiferen verwandter gefunden. Doch bleibt eine Anzahl Formen übrig, die wir vorläufig der obigen Tierklasse zuzählen wollen, da sie ohne Zwang keinem anderen uns bekannten Tiertypus anzureihen sind und immerhin gewisse Strukturmerkmale mit den Crinoiden gemein haben.

1. Eulophiscus. Nov. gen.

(εύλοφος, mit schönem Busch.)

Ein Büschel fächerförmig von einem Mittelpunkt ausstrahlender, im Leben ohne Zweifel frei

flottierender, unten, nahe dem Ursprung ein- oder zweimal gegabelter, weiterhin aber nicht mehr

verzweigter, ziemlich gleich dicker Arme.

Eulophiscus Quenstedtii. N. sp.

Wir beziehen hierher in erster Linie das hübsche Bild, das Hahn als Titel auf den Umschlag

seines Meteoritenwerkes gewählt und kleiner auf Taf. 22 Fig. 3 abgebildet hat. Auch dieses Objekt

gewährt aber unter dem Mikroskop ein viel deutlicheres Bild, als die Photographie leistete. Wir

sehen von einer Basis aus zunächst fünf dickere Arme ausgehen; der linke äußerste, am günstigsten

gelegene, zeigt unten einen Querschnitt von 0,04 mm. Schon 0,08 mm über seinem Ursprung gabelt

sich derselbe aufs Schönste in zwei Hauptarme von 0,02 mm Dicke. So bleiben sie sich dann gleich,

soweit man sie verfolgen kann, was bei dem linksliegenden bis ans Ende der Fächers, soweit dieser

erhalten, möglich ist. Die genannte Gabelung hat ganz die Form, wie wir sie bei den Crinoiden

gewohnt sind. Doch ist weder hier noch bei den übrigen Armen eine deutliche Quergliederung

sichtbar. Dass diese Arme im Leben frei im Wasser flottierten, ist sicher anzunehmen, denn man

sieht sie an mehreren Stellen sich über einander legen und kreuzen, unter einander verstecken u. s. f.

Die Größe des ganzen Büschels ist freilich für einen Crinoiden sehr unbedeutend; die Höhe des

ganzen Büschelchens beträgt nur 0,7, die Breite 1 mm. Das Ganze erscheint graulich gefärbt, die

genannten Hauptarme gelblich, halbdurchsichtig.

Stammt von Fall von Knyahinya.

Hierher vielleicht auch noch die Formen: Hahn, Meteoriten Taf. 22, Fig. 5 u. 6.

2. Euplocamus. Nov. gen.

(εὐπλοχαμος = schönhaarig.)

Eine der vorigen ähnliche Gattung, bei welcher aber die Arme nicht gegabelt sind.

Euplocamus algoideus. N. sp.

Diese Gattung und Art stützen wir zunächst auf das Hahn'sche Bild, Taf. 1 Fig. 6, Taf. 25

Fig. 1 und Taf. 19, welche alle dasselbe Objekt darstellen, und diese Bilder kann man als ziemlich

gelungen bezeichnen. Das hübsche Stückchen selbst macht unter dem Mikroskop ganz den

Eindruck eines Büschelchens Seealgen, die an einem Felsstück festgewachsen. Von einer

pflasterförmig gebauten Zentralscheibe aus strahlt hier, büschelförmig wie bei den vorigen, eine

große Anzahl gleich dicker Arme aus, die sich, so weit erhalten, nicht verjüngen. Der Durchmesser

der Arme beträgt 0,04 mm. Die Arme sind glashell durchsichtig. Durch das Innere eines jeden

derselben läuft eine dunkle Kontur, die auf einen feinen Hohlraum schließen lässt. Auch hier legen

und schieben sich die Arme durch- und über- einander, so dass man notwendig an ein einstiges,

freies Flottieren derselben denken muss. Das ganze Stöckchen hat eine Höhe von 0,8 mm und eine

Breite von 1,1 mm, ist also wie das vorige recht wohl noch mit bloßem Auge sichtbar.

Stammt vom Meteorfall von Knyahinya.

Euplocamus articulatus. N. Sp.

(Abbildung: Hahn, Tafel XXIII. Fig. 4.)

Ein sehr hübsches und deutliches, in dem photographischen Bilde aber weniger gelungenes

Objekt. Aus einer von vielen kleinen, eckigen Plättchen gebildeten Basis entspringt eine Quaste von

zunächst scheinbar ungegliederten, runden, stabförmigen, weiter oben durch deutliche Gliederung

ausgezeichneten Armen. Die Gliederung derselben beginnt in dem Objekte bei einer sehr

markierten Knickung der Arme. Diese haben, wie aus dem vorliegenden Petrefakt sicher

hervorgeht, frei durch und über einander flottiert. Die einzelnen Arme sind rund, ein innerer

Hohlraum ist nicht sichtbar, daher es wohl später von der Gattung Euplocamus wird getrennt werden müssen. Der Durchmesser des Ganzen beträgt 1,60 mm. Der Durchmesser der Arme unter dem Knie 0,08 mm. Nach oben verjüngen sie sich etwas, aber wenig. Der Durchmesser der eckigen Plättchen der Basis ist 0,03 bis 0,04 mm. Die Farbe des Ganzen ist gelblich, schön metallisch glänzend. - Es steckt in einem Schliff von dem Meteorfall von Knyahinya.

3. Crobyliscus. Nov. gen.

$$(x \rho \dot{\omega} \beta v \lambda o \varsigma = \text{Zopf.})$$

An einen deutlich aus vieleckigen, meist sechseckigen Plättchen gebildeten Hohlraum schließen sich oben Anzahl zylindrischer, zopfförmiger, sich nach dem Ende zu verjüngender, massiver (nicht hohler), aus eckigen Scheibchen gebildeter, armförmiger Anhänge an. Ist es ein Crinoid und ist jener Hohlraum der Kelch desselben? Das Fragment, auf das wir diese Gattung begründen, ist bis jetzt ein Unikum, dessen Bild wir in unser größeren Abhandlung bringen werden.

Crobyliscus Fraasii. N. Sp.

Längsdurchmesser des Ganzen, soweit erhalten, 0,74 mm. Querdurchmesser des Kelchs 0,45 mm. Länge der Arme, soweit erhalten, 0,35 mm. Querdurchmesser der Arme 0,3 bis 0,6 mm. Dicke der Wirtel, die die Arme zusammensetzen, 0,01 bis 0,02 mm. Durchmesser der eckigen Plättchen, die den Kelch zusammensetzen, 0,03 bis 0,05 mm. Das Mineral, aus dem das Gebilde jetzt besteht, ist zweifelsohne Kieselerde.

Von dem Meteorfall von Knyahinya.

--

Mit der vorläufigen Charakterisierung obiger sechzehn Gattungen von Meteoritenformen glauben wir, für jetzt wenigstens, die Basis einer kleinen Meteoritenfauna gelegt zu haben. Von allen nicht abgebildeten und außerdem von vielen schon photographisch von Hahn dargestellten,

soweit sie weniger gelungen, werden wir in unserer in Vorbereitung begriffenen, größeren Abhandlung genaue, selbstgezeichnete Bilder geben. Dieselben liegen bereits meist fertig vor.

Bezüglich der Nomenklatur bitten wir, bei sämtlichen oben aufgestellten, neuen Gattungen - ausgenommen Hahnia und Bosea - als Autorität unserem eigenen Namen den Namen unseres werten Freundes Dr. Hahn zuzufügen, der, wenn er auch keinen unmittelbaren Anteil an unserer Arbeit genommen, doch immer Derjenige bleibt, der zuerst die organische Herkunft dieser Formen behauptet und durch seinen immer wertvollen Atlas zu begründen versucht hat und auf dessen uns so freundlich zur Bearbeitung überlassener, reicher Sammlung unsere obige Arbeit beruht.

Da wir diese Untersuchungen mit Eifer fortzusetzen gedenken, erlauben wir uns zum Schlusse noch die freundliche Bitte an etwaige Besitzer von sicher beglaubigten Meteoritenstücken oder Schliffen, dieselben uns gefälligst zur mikroskopischen Untersuchung mitzuteilen. Wir werden dieselben stets in möglichster Bälde, unter Mitteilung des Resultats und nachfolgender öffentlicher Danksagung, zurückstellen. - Unsere Adresse ist: Dr. D. F. Weinland, Esslingen, Württemberg.

--

Druck von E. Blochmann und Sohn in Dresden.